Чем отличается автоклавный газобетон от неавтоклавного? Автоклавирование бетона


Автоклавная обработка изделий из ячеистого бетона.

Рассматривается технология автоклавной обработки изделий из ячеистого бетона.

Автоклавная обработка является одной из важнейших операций при изготовлении изделий из ячеистого бетона. Её режимы напрямую влияют на такие качественные характеристики готового продукта, как морозостойкость, усадка при высыхании, прочность при сжатии, внешний вид изделий (отколы, трещины). Базовое понимание процессов, происходящих в автоклаве, важно как при полностью автоматическом регулировании работы автоклава, так и при ручном управлении.

В данной статье мы кратко обобщим опыт, накопленный на заводах холдинга «Aeroc International» в автоклавной обработке.

Процесс изготовления ячеистого бетона

В этом разделе представлен краткий обзор всего процесса изготовления ячеистого бетона, поскольку определённые операции, входящие в этот процесс, напрямую влияют на поведение материала при автоклавной обработке.

Ячеистый бетон изготавливается из вяжущих, песка или золы, газообразователя и воды. Вяжущие — известь и цемент — содержат CaO, который имеет решающее значение для процесса. Песок или зола вводит в процесс SiO2. Из компонентов CaO, SiO2 и Н2О в автоклаве при воздействии высокого давления и высокой температуры образуется новый минерал — тоберморит (С4S5H5).

Собственно, образование новых минералов тоберморитовой структуры и возводит ячеистый бетон автоклавного твердения (в просторечии — газобетон) в совершенно другой ранг по сравнению с неавтоклавным ячеистым бетоном («пенобетоном»). Автоклавная обработка обеспечивает значительно более высокие физико-механические характеристики изделий из газобетона в сравнении с пенобетонными изделиями.

Автоклавная обработка обеспечивает значительно более высокие физико-механические характеристики изделий из газобетона в сравнении с пенобетонными изделиями.

Химические процессы, происходящие на разных стадиях производства, можно представить в следующем виде:

1. Выделение водорода на стадии образования пористой структуры в сырце:

 

 

 

2. Образование гидроксидов и гидросиликатов на стадии набора сырцом пластической (транспортной) прочности:

 

 

 

3. Образование новых минералов (тоберморита) на стадии автоклавной обработки:

 

 

Для наиболее полного протекания реакций в процессе автоклавной обработки необходимо, чтобы исходные материалы имели достаточно тонкодисперсную структуру. На стадии помола к кремнезёмистому компоненту добавляется гипсовый камень, который служит, в первую очередь, для регулирования реакций в автоклаве, а также ускоряет набор сырцом необходимой пластической прочности.

В смесителе сырьевые материалы перемешиваются, причём на качество перемешивания могут влиять как время смешивания, так и последовательность введения в смеситель сырьевых материалов. На выходе из смесителя должны быть обеспечены высокая гомогенность и определённая вязкость смеси.

Один из важнейших параметров — температура смеси на выходе из смесителя, которая очень сильно влияет на весь дальнейший процесс. При вспучивании газомассы и наборе сырцом необходимой для резки пластической прочности температура в массиве растёт. Огрубляя, можно сказать, что рост температуры продолжается примерно 1–1,5 ч; дальнейший прирост составляет лишь 1–3 °C. Однако температура в массиве распределяется неравномерно, она уменьшается в слоях, которые контактируют с бортами заливочной формы и воздухом.

Так как температура массива и её распределение являются важными для некоторых этапов автоклавной обработки, хотим обратить особое внимание на то, что все заводы «Aeroc» оснащены тепловыми тоннелями, которые препятствуют охлаждению массивов через стенки заливочных форм. Кроме того, заливочные формы первого цикла всегда доводятся в тепловых тоннелях до температуры, примерно соответствующей температуре заливки.

При резке массивов большое внимание уделяется отсутствию сквозняков, особенно — в зимнее время. Разрезанные массивы также находятся в тепловых тоннелях, которые препятствуют понижению температуры поверхности сырца, так как передача тепла в ячеистый бетон при автоклавной обработке происходит тем быстрее, чем выше его температура при загрузке в автоклав.

Этапы автоклавной обработки

При разработке режимов автоклавной обработки и привязке их к конкретному технологическому циклу необходимо учесть массу факторов и особенностей того или иного производства: качество сырьевых материалов, параметры смеси (температура и отношение В/Т), номенклатура выпускаемой продукции (размеры, наличие армирования, плотность ячеистого бетона), расположение запариваемых массивов в автоклаве, условия и время выдержки перед автоклавной обработкой и другое.

Автоклавная обработка принципиально разбивается на четыре этапа:

(1) подготовка ячеистого бетона к подъёму давления;

(2) подъём давления;

(3) изотермическая выдержка ячеистого бетона при определённых температуре и давлении;

(4) сброс давления и подготовка изделий к выгрузке из автоклава.

Первый этап может включать (вместе или раздельно) следующие мероприятия:

1. Продувка или предварительный подогрев изделий без давления.

2. Предварительный подогрев изделий при давлении.

3. Вакуумирование.

Целью первого этапа является оптимальная подготовка сырца и среды в автоклаве ко второму этапу процесса — подъёму давления.

Из опыта нашей работы следует, что для изделий, внутренняя температура которых менее  80 °C , наиболее предпочтительным из вышеуказанных мероприятий первого этапа является вакуумирование.

За счёт снижения давления в автоклаве вода, находящаяся в материале, начинает кипеть. Кипение воды начинается в самой теплой части массива, а именно — во внутренней его области. При дальнейшем снижении давления кипение продвигается от внутренней области массива наружу, что приводит к полному удалению воздуха из материала. При этом сам материал разогревается, температура по толще массива выравнивается. Необходимый вакуум зависит от конечной температуры массива и, как правило, составляет 0,5 бар. Максимальное разряжение достигается через 25–30 мин и далее поддерживается в течение 15–25 мин. Вакуумирование необходимо производить при горячем автоклаве (температура стенки автоклава должна быть не менее  80 °C ). Эту температуру всегда легко сохранить в условиях постоянного производства. В противном случае перед началом процесса автоклавной обработки автоклав необходимо предварительно разогреть без продукции.

Вакуумирование необходимо производить при горячем автоклаве.

Причинами плохого вакуумирования могут быть неисправности, связанные с вакуумной задвижкой, системой автоматического управления, а также неудовлетворительное функционирование вакуумного насоса.

Второй этап – подъём давления – заключается в разогреве материала до температуры изотермической выдержки (как правило, 190–193 °C). Разогрев происходит, главным образом, благодаря конденсации горячего пара на относительно холодной поверхности массивов, температура которых в начале процесса ниже температуры насыщенного пара. Образующийся конденсат переносит тепло в ячеистый бетон. Конденсация воды из пара может происходить как в виде капель, так и в виде закрытых водяных плёнок. В какой форме это происходит, зависит, в первую очередь, от разности температур между паром и ячеистым бетоном. Образование закрытых плёнок препятствует теплопередаче, что крайне нежелательно.

Для получения качественных изделий подъём давления следует проводить в три этапа:

(1) от –0,5 бар до 0 бар — 30–45 мин;

(2) от 0 бар до 3 бар — 30–45мин;

(3) от 3 бар до 12 бар — 65 мин.

Если на изделиях появляются отколы и трещины, то подъём давления на первых двух этапах необходимо вести медленнее. Однако если увеличение времени каждого из этапов до 60 мин не даёт должного эффекта, нужно вмешаться в процесс заливки: изменить параметры смеси.

При достижении ячеистым бетоном температуры  150 °C начинается ускоренный экзотермический разогрев массивов за счёт энергии, освобождающейся при образовании гидросиликатов. Особое внимание следует обратить на то, что остановка подъёма давления и, тем более, его понижение могут привести к разрушению ячеистого бетона избыточным внутренним давлением. Особенно это характерно для армированных изделий и бетонов, плотность которых более 500 кг/м3.

 Остановка подъёма давления и, тем более, его понижение могут привести к разрушению ячеистого бетона избыточным внутренним давлением.

Изотермическая выдержка проводится в течение определённого времени при заданных давлении и температуре, которые обеспечивают достаточно глубокое протекание химических реакций образования новых минералов.

Оптимальная температура изотермии при производстве ячеистого бетона составляет 190–193 °C, рабочее давление в автоклаве — 11,5–13 бар. Время выдержки зависит как от номенклатуры продукции (мелкоштучные блоки или армированные изделия), так и от её плотности. Для плотности 350–500 кг/м3 оптимальное время выдержки составляет 360 мин при давлении 12 бар.

Если сырьевые материалы подобраны правильно, а рецептура рассчитана корректно, в автоклаве на стадии выдержки происходит самопроизвольный рост давления без подачи в автоклав пара.

Сброс давления должен проводиться плавно. Продолжительность сброса давления зависит в основном от номенклатуры продукции и от плотности изделий. Для плотностей 350–500 кг/м3 оптимальное время сброса, по нашему опыту, составляет 90 мин. Для изделий плотностью 600 кг/м3 и более, а также для армированных изделий, продолжительность сброса увеличивается, а сам сброс проводится ступенчато с разными градиентами.

 

 

Рис 1. Изображение процесса в виде графика

 

Причины дефектов в материале, которые возникают при автоклавной обработке и пути их устранения

 1. Не затвердевшие участки массива (рис. 2).

 

 

Рис. 2.

Внешне выглядят как тёмные пятна, расположенные в средней части блока. Появляются в том случае.... (продолжение в следующей рассылке)

Д. Рудченко,Руководитель по развитию ООО «Аэрок СПб»

 

 

Автоклавная обработка изделий из ячеистого бетона. Теория и практика от «Aeroc International»

Рассматривается технология автоклавной обработки изделий из ячеистого бетона.

Продолжение, начало в рассылке №64

 

 1. Не затвердевшие участки массива (рис. 2).

 

 

Рис. 2.

Внешне выглядят как тёмные пятна, расположенные в средней части блока. Появляются в том случае, когда при автоклавной обработке температура бетона в этих областях недостаточна для образования гидросиликатов. Причиной может послужить недостаточность вакуумирования, в результате которой вода в этих зонах не закипает и воздух не вытесняется. В данном случае увеличение времени экзотермической выдержки эффекта не даёт.

Для устранения данного дефекта необходимо увеличить глубину вакуума и время выдержки при отрицательном давлении. Также в этом случае можно прибегнуть к комбинации продувки и вакуумирования. Если при осуществлении этих действий ситуация не изменится, необходимо вмешаться в процесс дозирования и смешивания: снизить на сколько это возможно отношение В/Т и увеличить внутреннюю температуру в массиве до 80–85 °C.

 

2. Отколы и трещины (рис. 3).

 

Рис. 3.

Механизм образования этих дефектов таков: пар конденсируется не только на поверхности материала, но и в толще массива. До тех пор, пока ячейки полностью не заполнены водой, разрушений не возникает, но как только начинает конденсироваться слишком много воды, внутри материала возникает значительное напряжение, которое в последствии приводит к разрушению.

Разрушения могут быть разной интенсивности: от тонких волосяных трещин до сильных поверхностных разрушений.

Итак, отколы появляются всегда, когда в автоклав подаётся слишком много пара за единицу времени. Поэтому при возникновении отколов и трещин следует увеличить длительность подъёма давления на первых двух этапах — от –0,5 до 0 бар и от 0 до 3 бар, соответственно. Если же при увеличении длительности подъёма давления результат не получен, необходимо изменить некоторые параметры.

Первый параметр — это температура массива до начала автоклавной обработки: чем холоднее массив, тем больше воды в нем конденсируется. Поэтому необходимо провести ряд мероприятий, исключающих остывание массива, а именно: предусмотреть наличие подогреваемых камер предавтоклавной выдержки, увеличить конечную температуру сырца, исключить сквозняки.

Второй и наиболее важный параметр — это количество воды, которое имеется в массиве при загрузке его в автоклав.

Когда материал формуется с высоким отношением В/Т, он содержит в себе очень много воды. Для автоклавной обработки на единицу массы воды сырца требуется четырёхкратное по массе количество пара. Избыток воды в сырце ведёт к увеличению расхода пара. В результате в материал начинает впитываться излишнее количество конденсата, что неминуемо приводит к откалыванию бетона. Единственный выход из такой ситуации — пересмотр существующих рецептур с целью снижения отношения В/Т. 

Оптимальное отношение В/Т для изделий плотностью 350–500 кг/м3, производимых по литьевой технологии, должно находится в пределах 0,6–0,67.

Автор статьи надеется на отклик специалистов, занимающихся изготовлением изделий из ячеистого бетона автоклавного твердения, а также на то, что обобщение нашего опыта поможет дальнейшему совершенствованию производств, работающих по литьевой технологии и, как следствие этого, выпуску продукции более высокого качества.

www.allbeton.ru

Автоклавная обработка изделий из ячеистого бетона

Автоклавная обработка изделий из ячеистого бетона. Теория и практика от «Aeroc International»

Рассматривается технология автоклавной обработки изделий из ячеистого бетона.

Автоклавная обработка является одной из важнейших операций при изготовлении изделий из ячеистого бетона. Её режимы напрямую влияют на такие качественные характеристики готового продукта, как морозостойкость, усадка при высыхании, прочность при сжатии, внешний вид изделий (отколы, трещины). Базовое понимание процессов, происходящих в автоклаве, важно как при полностью автоматическом регулировании работы автоклава, так и при ручном управлении.

В данной статье мы кратко обобщим опыт, накопленный на заводах холдинга «Aeroc International» в автоклавной обработке.

Процесс изготовления ячеистого бетона

В этом разделе представлен краткий обзор всего процесса изготовления ячеистого бетона, поскольку определённые операции, входящие в этот процесс, напрямую влияют на поведение материала при автоклавной обработке.

Ячеистый бетон изготавливается из вяжущих, песка или золы, газообразователя и воды. Вяжущие — известь и цемент — содержат CaO, который имеет решающее значение для процесса. Песок или зола вводит в процесс SiO2. Из компонентов CaO, SiO2 и Н2О в автоклаве при воздействии высокого давления и высокой температуры образуется новый минерал — тоберморит (С4S5H5).

Собственно, образование новых минералов тоберморитовой структуры и возводит ячеистый бетон автоклавного твердения (в просторечии — газобетон) в совершенно другой ранг по сравнению с неавтоклавным ячеистым бетоном («пенобетоном»). Автоклавная обработка обеспечивает значительно более высокие физико-механические характеристики изделий из газобетона в сравнении с пенобетонными изделиями.

Автоклавная обработка обеспечивает значительно более высокие физико-механические характеристики изделий из газобетона в сравнении с пенобетонными изделиями.

Химические процессы, происходящие на разных стадиях производства, можно представить в следующем виде:

1. Выделение водорода на стадии образования пористой структуры в сырце:

 

  

 

2. Образование гидроксидов и гидросиликатов на стадии набора сырцом пластической (транспортной) прочности:

 

  

 

3. Образование новых минералов (тоберморита) на стадии автоклавной обработки:

 

  

Для наиболее полного протекания реакций в процессе автоклавной обработки необходимо, чтобы исходные материалы имели достаточно тонкодисперсную структуру. На стадии помола к кремнезёмистому компоненту добавляется гипсовый камень, который служит, в первую очередь, для регулирования реакций в автоклаве, а также ускоряет набор сырцом необходимой пластической прочности.

В смесителе сырьевые материалы перемешиваются, причём на качество перемешивания могут влиять как время смешивания, так и последовательность введения в смеситель сырьевых материалов. На выходе из смесителя должны быть обеспечены высокая гомогенность и определённая вязкость смеси.

Один из важнейших параметров — температура смеси на выходе из смесителя, которая очень сильно влияет на весь дальнейший процесс. При вспучивании газомассы и наборе сырцом необходимой для резки пластической прочности температура в массиве растёт. Огрубляя, можно сказать, что рост температуры продолжается примерно 1–1,5 ч; дальнейший прирост составляет лишь 1–3 °C. Однако температура в массиве распределяется неравномерно, она уменьшается в слоях, которые контактируют с бортами заливочной формы и воздухом.

Так как температура массива и её распределение являются важными для некоторых этапов автоклавной обработки, хотим обратить особое внимание на то, что все заводы «Aeroc» оснащены тепловыми тоннелями, которые препятствуют охлаждению массивов через стенки заливочных форм. Кроме того, заливочные формы первого цикла всегда доводятся в тепловых тоннелях до температуры, примерно соответствующей температуре заливки.

При резке массивов большое внимание уделяется отсутствию сквозняков, особенно — в зимнее время. Разрезанные массивы также находятся в тепловых тоннелях, которые препятствуют понижению температуры поверхности сырца, так как передача тепла в ячеистый бетон при автоклавной обработке происходит тем быстрее, чем выше его температура при загрузке в автоклав.

Этапы автоклавной обработки

При разработке режимов автоклавной обработки и привязке их к конкретному технологическому циклу необходимо учесть массу факторов и особенностей того или иного производства: качество сырьевых материалов, параметры смеси (температура и отношение В/Т), номенклатура выпускаемой продукции (размеры, наличие армирования, плотность ячеистого бетона), расположение запариваемых массивов в автоклаве, условия и время выдержки перед автоклавной обработкой и другое.

Автоклавная обработка принципиально разбивается на четыре этапа:

(1) подготовка ячеистого бетона к подъёму давления;

(2) подъём давления;

(3) изотермическая выдержка ячеистого бетона при определённых температуре и давлении;

(4) сброс давления и подготовка изделий к выгрузке из автоклава.

Первый этап может включать (вместе или раздельно) следующие мероприятия:

1. Продувка или предварительный подогрев изделий без давления.

2. Предварительный подогрев изделий при давлении.

3. Вакуумирование.

Целью первого этапа является оптимальная подготовка сырца и среды в автоклаве ко второму этапу процесса — подъёму давления.

Из опыта нашей работы следует, что для изделий, внутренняя температура которых менее  80 °C , наиболее предпочтительным из вышеуказанных мероприятий первого этапа является вакуумирование.

За счёт снижения давления в автоклаве вода, находящаяся в материале, начинает кипеть. Кипение воды начинается в самой теплой части массива, а именно — во внутренней его области. При дальнейшем снижении давления кипение продвигается от внутренней области массива наружу, что приводит к полному удалению воздуха из материала. При этом сам материал разогревается, температура по толще массива выравнивается. Необходимый вакуум зависит от конечной температуры массива и, как правило, составляет 0,5 бар. Максимальное разряжение достигается через 25–30 мин и далее поддерживается в течение 15–25 мин. Вакуумирование необходимо производить при горячем автоклаве (температура стенки автоклава должна быть не менее  80 °C ). Эту температуру всегда легко сохранить в условиях постоянного производства. В противном случае перед началом процесса автоклавной обработки автоклав необходимо предварительно разогреть без продукции.

Вакуумирование необходимо производить при горячем автоклаве.

Причинами плохого вакуумирования могут быть неисправности, связанные с вакуумной задвижкой, системой автоматического управления, а также неудовлетворительное функционирование вакуумного насоса.

Второй этап – подъём давления – заключается в разогреве материала до температуры изотермической выдержки (как правило, 190–193 °C). Разогрев происходит, главным образом, благодаря конденсации горячего пара на относительно холодной поверхности массивов, температура которых в начале процесса ниже температуры насыщенного пара. Образующийся конденсат переносит тепло в ячеистый бетон. Конденсация воды из пара может происходить как в виде капель, так и в виде закрытых водяных плёнок. В какой форме это происходит, зависит, в первую очередь, от разности температур между паром и ячеистым бетоном. Образование закрытых плёнок препятствует теплопередаче, что крайне нежелательно.

Для получения качественных изделий подъём давления следует проводить в три этапа:

(1) от –0,5 бар до 0 бар — 30–45 мин;

(2) от 0 бар до 3 бар — 30–45мин;

(3) от 3 бар до 12 бар — 65 мин.

Если на изделиях появляются отколы и трещины, то подъём давления на первых двух этапах необходимо вести медленнее. Однако если увеличение времени каждого из этапов до 60 мин не даёт должного эффекта, нужно вмешаться в процесс заливки: изменить параметры смеси.

При достижении ячеистым бетоном температуры  150 °C начинается ускоренный экзотермический разогрев массивов за счёт энергии, освобождающейся при образовании гидросиликатов. Особое внимание следует обратить на то, что остановка подъёма давления и, тем более, его понижение могут привести к разрушению ячеистого бетона избыточным внутренним давлением. Особенно это характерно для армированных изделий и бетонов, плотность которых более 500 кг/м3.

 Остановка подъёма давления и, тем более, его понижение могут привести к разрушению ячеистого бетона избыточным внутренним давлением.

Изотермическая выдержка проводится в течение определённого времени при заданных давлении и температуре, которые обеспечивают достаточно глубокое протекание химических реакций образования новых минералов.

Оптимальная температура изотермии при производстве ячеистого бетона составляет 190–193 °C, рабочее давление в автоклаве — 11,5–13 бар. Время выдержки зависит как от номенклатуры продукции (мелкоштучные блоки или армированные изделия), так и от её плотности. Для плотности 350–500 кг/м3 оптимальное время выдержки составляет 360 мин при давлении 12 бар.

Если сырьевые материалы подобраны правильно, а рецептура рассчитана корректно, в автоклаве на стадии выдержки происходит самопроизвольный рост давления без подачи в автоклав пара.

Сброс давления должен проводиться плавно. Продолжительность сброса давления зависит в основном от номенклатуры продукции и от плотности изделий. Для плотностей 350–500 кг/м3 оптимальное время сброса, по нашему опыту, составляет 90 мин. Для изделий плотностью 600 кг/м3 и более, а также для армированных изделий, продолжительность сброса увеличивается, а сам сброс проводится ступенчато с разными градиентами.

 

  

Рис 1. Изображение процесса в виде графика

 

Причины дефектов в материале, которые возникают при автоклавной обработке и пути их устранения

 1. Не затвердевшие участки массива (рис. 2).

Внешне выглядят как тёмные пятна, расположенные в средней части блока. Появляются в том случае…. (продолжение в следующей рассылке)

Д. Рудченко,Руководитель по развитию ООО «Аэрок СПб»

 

 

Автоклавная обработка изделий из ячеистого бетона. Теория и практика от «Aeroc International»

Рассматривается технология автоклавной обработки изделий из ячеистого бетона.

Продолжение, начало в рассылке №64

 

 1. Не затвердевшие участки массива (рис. 2).

Внешне выглядят как тёмные пятна, расположенные в средней части блока. Появляются в том случае, когда при автоклавной обработке температура бетона в этих областях недостаточна для образования гидросиликатов. Причиной может послужить недостаточность вакуумирования, в результате которой вода в этих зонах не закипает и воздух не вытесняется. В данном случае увеличение времени экзотермической выдержки эффекта не даёт.

Для устранения данного дефекта необходимо увеличить глубину вакуума и время выдержки при отрицательном давлении. Также в этом случае можно прибегнуть к комбинации продувки и вакуумирования. Если при осуществлении этих действий ситуация не изменится, необходимо вмешаться в процесс дозирования и смешивания: снизить на сколько это возможно отношение В/Т и увеличить внутреннюю температуру в массиве до 80–85 °C.

 

2. Отколы и трещины (рис. 3).

Механизм образования этих дефектов таков: пар конденсируется не только на поверхности материала, но и в толще массива. До тех пор, пока ячейки полностью не заполнены водой, разрушений не возникает, но как только начинает конденсироваться слишком много воды, внутри материала возникает значительное напряжение, которое в последствии приводит к разрушению.

Разрушения могут быть разной интенсивности: от тонких волосяных трещин до сильных поверхностных разрушений.

Итак, отколы появляются всегда, когда в автоклав подаётся слишком много пара за единицу времени. Поэтому при возникновении отколов и трещин следует увеличить длительность подъёма давления на первых двух этапах — от –0,5 до 0 бар и от 0 до 3 бар, соответственно. Если же при увеличении длительности подъёма давления результат не получен, необходимо изменить некоторые параметры.

Первый параметр — это температура массива до начала автоклавной обработки: чем холоднее массив, тем больше воды в нем конденсируется. Поэтому необходимо провести ряд мероприятий, исключающих остывание массива, а именно: предусмотреть наличие подогреваемых камер предавтоклавной выдержки, увеличить конечную температуру сырца, исключить сквозняки.

Второй и наиболее важный параметр — это количество воды, которое имеется в массиве при загрузке его в автоклав.

Когда материал формуется с высоким отношением В/Т, он содержит в себе очень много воды. Для автоклавной обработки на единицу массы воды сырца требуется четырёхкратное по массе количество пара. Избыток воды в сырце ведёт к увеличению расхода пара. В результате в материал начинает впитываться излишнее количество конденсата, что неминуемо приводит к откалыванию бетона. Единственный выход из такой ситуации — пересмотр существующих рецептур с целью снижения отношения В/Т. 

Оптимальное отношение В/Т для изделий плотностью 350–500 кг/м3, производимых по литьевой технологии, должно находится в пределах 0,6–0,67.

Автор статьи надеется на отклик специалистов, занимающихся изготовлением изделий из ячеистого бетона автоклавного твердения, а также на то, что обобщение нашего опыта поможет дальнейшему совершенствованию производств, работающих по литьевой технологии и, как следствие этого, выпуску продукции более высокого качества.

Д. Рудченко,Руководитель по развитию ООО «Аэрок СПб»

Источник — Журнал Популярное Бетоноведение

 

 

aac-plant.ru

Чем отличается автоклавный газобетон от неавтоклавного?

Домой

Автоклавирование газобетона

В последнее время в связи с ростом популярности строительных блоков из ячеистых бетонов часто возникает вопрос: в чем отличие автоклавного газобетона от неавтоклавных материалов (пенобетона и неавтоклавного газобетона)? Постараемся ответить на данный вопрос в этой статье.

Распространены несколько терминов, обозначающих строительные материалы из ячеистого бетона – газобетон, пенобетон, кроме того есть такие характеристики, как автоклавный и неавтоклавный. Разберемся в определениях. Ячеистый бетон – это общее наименование всех легких бетонов, которые характеризуются наличием множества пор (ячеек) в своей структуре, которые придают улучшенные физико-механические свойства материалу.

По способу порообразования ячеистые бетоны делятся на пенобетоны и газобетоны. Как следует из названия, в одном материале для создания ячеистой структуры применяется химическая пена, а в другом газ.

Пенобетон –  застывший в поризованном состоянии цементно-песчаный раствор. Ячеистая структура в нем формируется за счет введения и «взбивания» химических пенообразователей. Как правило, цех по производству пенобетона («заводом» назвать эту фабрику крайне сложно), небольшой по площади с преобладанием ручного труда и неквалифицированного персонала. Объем производства крайне мал, оборачиваемость средств низкая, поэтому экономить в таком производстве приходится буквально на всем, что явно не способствует повышению качества готового продукта.

Насыщения бетона газом, выделяющимся при реакции извести и алюминиевой пасты – процесс достаточно сложный и требующий тщательного контроля за дозировкой этих компонентов. Обеспечить это возможно только на крупных заводах с качественным автоматизированным оборудованием, и еще недавно термин «газобетон» уже по умолчанию означал наличие автоклавной обработки. Так постепенно в сознании потребителя сформировалось устойчивое и вполне объективное мнение: пенобетон – это дешево и с посредственными характеристиками; газобетон – немного дороже, но значительно лучше качество и стабильные свойства.

В конкурентной борьбе за покупателя, производители пенобетона вместо снижения цены или улучшения качества своих изделий, решили просто уйти от полностью дискредитированного термина «пенобетон», заменив его более благозвучным – НЕавтоклавный газобетон. В сути своей материал не изменился, теперь в ту же химическую пену добавляется немного газообразователя, затем все также разливается в опалубку и раствор набирает прочность под открытым небом. Для конечного потребителя, кроме увеличения цены продукта, это переименование ничего не несет.

Что такое автоклавирование и для чего оно нужно?

Автоклавная обработка – пропаривание в металлических капсулах (автоклавах) при высоком давлении (12 атм.) и высокой температуре (191оС) – позволяет получить материал с такими свойствами, какие невозможно получить в обычных условиях. Автоклавирование газобетона производится не только для того, чтобы ускорить процесс твердения смеси. Основной смысл состоит в том, что в автоклаве в структуре газобетона происходят изменения на молекулярном уровне, и образуется новый минерал с уникальными эксплуатационными характеристиками — тоберморит. Поэтому автоклавный газобетон – это искусственно синтезированный камень, а неавтоклавные бетоны – фактически застывший в поризованном состоянии цементно-песчаный раствор.

Автоклавный  газобетон и неавтоклавные материалы принципиально различаются по целому ряду параметров, начиная от состава и заканчивая физико-техническими и эксплуатационными характеристиками.  А если быть точнее, автоклавный газобетон превосходит их по всем показателям.

Рассмотрим основные показатели:

1. Стабильность качества автоклавного газобетона

Автоклавный газобетон изготавливается только на крупном производстве и на стройплощадку попадает в виде готовых блоков. Производство автоклавного газобетона в кустарных условиях невозможно, так как при изготовлении необходимо контролировать одновременно несколько десятков процессов и параметров. Современные заводы автоклавного газобетона имеют высокую степень автоматизации (около 95%) и практически исключают влияние человеческого фактора на производственный процесс.

Автоклавный газобетон производится согласно современному ГОСТу 2007 года, что подтверждается протоколами испытаний, продукция имеет сертификат качества, и клиент может быть уверен в надлежащем качестве.

Для производства пенобетона и неавтоклавного газобетона не требуется большого завода и огромных капиталовложений, что обеспечивает низкий порог входа в этот бизнес. На практике это означает, что имея небольшую бетонно-растворную установку, опалубку и пару низкоквалифицированных рабочих, можно организовать кустарное производство с нестабильными показателями качества, гордо назвав это заводом или фабрикой по производству стройматериалов. Обеспечить в таких условиях стабильность характеристик продукта практически невозможно, поскольку дозирование компонентов производится вручную и, как правило «на глаз», а старый ГОСТ, которому уже больше четверти века, допускает производство таких изделий.

1.jpg

2. Прочность

Ячеистые бетоны изготавливают различной плотности: от 400 до 800 кг/м3 классом прочности на сжатие от В1,5 до В7,5. Самыми ходовыми являются плотности D500 и D600, при этом автоклавный газобетон на этих плотностях имеет класс по прочности на сжатие B2,5 и B3,5 соответственно.

Неавтоклавные же материалы значительно проигрывают автоклавному газобетону по физическим свойствам и прочности при одинаковой плотности. Например, при плотности D600 они имеют прочность на сжатие в два раза ниже, чем у автоклавного газобетона! Кроме того, производители неавтоклавных материалов просто не могут выпускать строительные блоки с плотностью ниже D600, т.к. эти блоки не имеют прочности вообще, а применять их в строительстве недопустимо.

2.jpg

 3. Возможность крепления

Автоклавирование значительно повышает прочностные характеристики газобетона. В основание из автоклавного газобетона можно закрепить не только шкафы и полки, но и бойлеры, кондиционеры, вентилируемые фасады. Причем навесные фасады могут быть как из легкого композита так и из тяжелого керамогранита. Для этого применяются анкера с полиамидными распираемыми элементами. Например, один анкер 10х100 выдерживает нагрузку на вырыв по оси до 700кг, что вполне сравнимо с показателями полнотелого кирпича или тяжелого бетона.

Говорить о креплении в пенобетон или НЕавтоклавный газобетон просто не приходится. Гвоздь или шуруп просто вдавливается в стену руками, поэтому применение обычного механического крепежа здесь невозможно. Можно использовать для крепления НЕтяжелых предметов, например, зеркал или крючков для одежды, дорогостоящий двухкомпонентный химический анкер, что дает хоть какую-то иллюзию надежности. Но при навешивании на стену кухонного гарнитура даже использование «химии» не поможет, т.к. под весом шкафа с посудой произойдет разрушение неавтоклавного материала в месте крепления и из стены просто выпадет кусок блока.

3.jpg

4. Однородность

При производстве автоклавного газобетона газообразование происходит одновременно во всем объеме материала. Параллельно с газообразованием происходит отверждение. По мере роста массива на опалубку от закрепленных на ней специальных вибраторов периодически  подается импульс, который «встряхивает» массив, выгоняя из него крупные пузыри газа и исключая наличие раковин и воздушных мешков в готовых блоках. В результате поры одного размера и равномерно распределены по всему объему материала. Строительные блоки из автоклавного газобетона получают в результате разрезания большого массива, что гарантирует идеальное и одинаковое качество всех блоков.

Неавтоклавный газобетон и пенобетон получают введением в бетонную массу пены, газообразователей и перемешивая ее. В итоге часто случается, что пузырьки, как более легкие компоненты смеси, всплывают вверх, а более тяжелые наполнители оседают вниз. Получается неравномерное распределение пор в блоке, и за счет этого нет возможности добиться единых характеристик на разных блоках. Технология производства неавтоклавного газобетона исключает возможность встряхивания массива, поэтому наличие пузырей диаметром 50-70 мм – обычное дело. В таком материале часто возникают более холодные участки стены с выпадением конденсата на поверхности, а также трещины – в местах ослабления кладки крупными пузырями воздуха.

4.jpg

5. Усадка при высыхании

Набор прочности неавтоклавным ячеистым бетоном сопровождается значительной его усадкой, которая, в свою очередь, приводит к растрескиванию готовой кладки. Очень часто приходится видеть, как на недавно построенном и отделанном здании появляются множественные трещины, отслаивается отделочный слой, отваливается штукатурка. Эти процессы могут протекать в течение нескольких лет  –  того самого периода, пока идет «набор прочности».

Более того, трещинами испещрены блоки еще до того, как они уложены в кладку. Избавиться от усадки и трещин можно только автоклавированием, но в условиях кустарного производства это невозможно. Поэтому продавцы пенобетона и неавтоклавного газобетона идут на маркетинговые уловки, добавляя фибру (бумагу, пропитанную раствором серной кислоты и роданидом кальция) и называя это «армированным пенобетоном», устойчивым к растрескиванию. Для конечного потребителя, опять же кроме увеличения стоимости, фибра ничего не дает, ведь любой человек, даже не связанный со строительной индустрией, понимает, что если добавить бумагу в бетон, то никаких чудодейственных свойств, обещанных продавцами пенобетона, у материала не появится.

Нужно отметить, что чем легче (а как следствие, и теплее) материал, тем больше усадка. Опыт строительства показывает, что стены из неавтоклавных ячеистых бетонов  нельзя просто зашпаклевать и покрасить – внутри их приходится закрывать гипсокартоном, а для внешней отделки применять навесные фасады с креплением в перекрытие или кирпич.

Автоклавный газобетон полностью набрал прочность уже в процессе производства и автоклавирования, поэтому усадочные деформации ему не грозят.

К примеру, для автоклавного газобетона показатель усадки не превышает 0,4 мм/м, тогда как для неавтоклавных материалов он составляет в 10 раз больше - до 5 мм/м.

5.jpg

6. Экологичность

Автоклавный газобетон является абсолютно экологичным и аэропроницаемым материалом. Поэтому в доме из автоклавного газобетона всегда благоприятный микроклимат для проживания, сходный с климатом деревянного дома. Газобетон производится из минерального сырья, поэтому совершенно не подвержен гниению, а благодаря способности к регулированию влажности воздуха в помещении, полностью исключается вероятность появления на нем грибков и плесени.

Пенобетон может изготавливают из самого дешевого местного сырья: песка, отходов щебеночного производства, кроме того, в качестве пенообразователей применяются химические добавки, что, несомненно, снижает показатели экологичности дома из пенобетона. Также химические компоненты вносятся в блок с фиброй, пропитанной кислотами, хлоридами и роданидами. Даже присутствующие в небольших количествах, эти вещества способны выделяться и накапливаться в воздухе жилых помещений.

7. Геометрия

Точность геометрических размеров блоков из автоклавного газобетона регулируется современным ГОСТом, допустимые отклонения – по длине до 3 мм, по ширине до 2 мм, по толщине – до 1 мм. Блоки получаются путем резки струнами большого массива автоклавного газобетона и нарезать неровно на таком оборудовании просто нельзя.

Неавтоклавный газобетон и пенобетон разливают в опалубку с ограниченными циклами использования. Ввиду все той же экономии, опалубка используется в несколько раз дольше ее нормативного срока службы, а поскольку опалубка разборная, то в силу ее деформаций и износа собрать ее правильно с каждым разом становится все сложнее и сложнее – отсюда и отклонения по геометрии блоков. Для неавтоклавных газобетона и пенобетона отклонения геометрических размеров допускаются значительно больше - по толщине могут достигать 5 мм (старый ГОСТ 1989 года).

Большой разбег в геометрических размерах блоков из неавтоклавных материалов влечет ухудшение всех показателей кладки:

  • - увеличивается толщина слоя раствора, приводя к увеличению стоимости кладки
  • - увеличивается усадка кладки, т.к. помимо блоков усаживаются и толстые растворные швы
  • - образуются мостики холода из-за толстых растворных швов
  • - требуется трудоемкое выравнивание вертикальной поверхности стен
  • - расход цементно-песчаного раствора в 5-6 раз выше, чем кладочного клея
  • - увеличивается толщина и трудоемкость отделочных работ
  • - снижается прочность кладки
7.jpg

8. Теплоизоляционные свойства

Плотность пенобетона или газобетона напрямую влияет на их теплоизоляционные свойства и, чем материал плотнее,  тем теплоизоляция ниже. Пенобетон или неавтоклавный газобетон с низкой плотностью – это отличный теплоизоляционный материал, но прочность у него крайне низкая и применять его для кладки стен нельзя. В качестве конструктивного, особенно для несущих стен, требуется плотность выше, а значит, материал будет «холоднее». К примеру, для Иркутской области при использовании неавтоклавных материалов плотность ячеистого бетона должна быть минимум 700 кг/куб. метр. И без того невыдающиеся теплоизоляционные свойства значительно ухудшаются ведением кладки на цементно-песчаном растворе с толстыми швами. Это значит, что толщина стены из пенобетона или неавтоклавного газобетона с плотностью D700 для нормальной теплоизоляции без применения утеплителя должна быть около 65-70 см.

Стена из автоклавного газобетона обеспечивает такие же показатели теплозащиты и прочности при толщине всего 40 см, при этом достаточно плотности D400-D500. Объективно автоклавный газобетон обладает лучшими, чем неавтоклавные материалы, показателями прочности и теплоизоляции при меньшем весе.

8.jpg

Подведем итоги

  • - Автоклавный газобетон превосходит неавтоклавные материалы по физико-техническим свойствам благодаря автоклавной обработке.
  • - Автоклавный газобетон производится только на современных заводах со стабильным гарантированным качеством на уровне мировых стандартов.
  • - Автоклавный газобетон отличается от неавтоклавных материалов более высокой прочностью при меньшем весе.
  • - Автоклавный газобетон не дает усадки в процессе эксплуатации.
  • - Блоки из автоклавного газобетона отличаются точными размерами и равномерной плотностью массива.
  • - Автоклавный газобетон является искусственным природным минералом, что обуславливает высочайший уровень его экологичности.
  • - Применение автоклавного газобетона позволяет возвести теплоэффективный дом с однородной стеной 400 мм, не требующей утепления.

Строительство домов из неавтоклавных материалов дешевле только на первый взгляд. Если учесть плохую геометрию неавтоклавных материалов, худшие показатели теплоизоляции и прочности по сравнению с автоклавным газобетоном, необходимость в большем расходе кладочных и выравнивающих материалов, то выгода строительства из неавтоклавных  материалов отсутствует. 

ulanude.bgazobeton.ru

Чем отличается автоклавный газобетон от неавтоклавного?

Домой

Автоклавирование газобетона

В последнее время в связи с ростом популярности строительных блоков из ячеистых бетонов часто возникает вопрос: в чем отличие автоклавного газобетона от неавтоклавных материалов (пенобетона и неавтоклавного газобетона)? Постараемся ответить на данный вопрос в этой статье.

Распространены несколько терминов, обозначающих строительные материалы из ячеистого бетона – газобетон, пенобетон, кроме того есть такие характеристики, как автоклавный и неавтоклавный. Разберемся в определениях. Ячеистый бетон – это общее наименование всех легких бетонов, которые характеризуются наличием множества пор (ячеек) в своей структуре, которые придают улучшенные физико-механические свойства материалу.

По способу порообразования ячеистые бетоны делятся на пенобетоны и газобетоны. Как следует из названия, в одном материале для создания ячеистой структуры применяется химическая пена, а в другом газ.

Пенобетон –  застывший в поризованном состоянии цементно-песчаный раствор. Ячеистая структура в нем формируется за счет введения и «взбивания» химических пенообразователей. Как правило, цех по производству пенобетона («заводом» назвать эту фабрику крайне сложно), небольшой по площади с преобладанием ручного труда и неквалифицированного персонала. Объем производства крайне мал, оборачиваемость средств низкая, поэтому экономить в таком производстве приходится буквально на всем, что явно не способствует повышению качества готового продукта.

Насыщения бетона газом, выделяющимся при реакции извести и алюминиевой пасты – процесс достаточно сложный и требующий тщательного контроля за дозировкой этих компонентов. Обеспечить это возможно только на крупных заводах с качественным автоматизированным оборудованием, и еще недавно термин «газобетон» уже по умолчанию означал наличие автоклавной обработки. Так постепенно в сознании потребителя сформировалось устойчивое и вполне объективное мнение: пенобетон – это дешево и с посредственными характеристиками; газобетон – немного дороже, но значительно лучше качество и стабильные свойства.

В конкурентной борьбе за покупателя, производители пенобетона вместо снижения цены или улучшения качества своих изделий, решили просто уйти от полностью дискредитированного термина «пенобетон», заменив его более благозвучным – НЕавтоклавный газобетон. В сути своей материал не изменился, теперь в ту же химическую пену добавляется немного газообразователя, затем все также разливается в опалубку и раствор набирает прочность под открытым небом. Для конечного потребителя, кроме увеличения цены продукта, это переименование ничего не несет.

Что такое автоклавирование и для чего оно нужно?

Автоклавная обработка – пропаривание в металлических капсулах (автоклавах) при высоком давлении (12 атм.) и высокой температуре (191оС) – позволяет получить материал с такими свойствами, какие невозможно получить в обычных условиях. Автоклавирование газобетона производится не только для того, чтобы ускорить процесс твердения смеси. Основной смысл состоит в том, что в автоклаве в структуре газобетона происходят изменения на молекулярном уровне, и образуется новый минерал с уникальными эксплуатационными характеристиками — тоберморит. Поэтому автоклавный газобетон – это искусственно синтезированный камень, а неавтоклавные бетоны – фактически застывший в поризованном состоянии цементно-песчаный раствор.

Автоклавный  газобетон и неавтоклавные материалы принципиально различаются по целому ряду параметров, начиная от состава и заканчивая физико-техническими и эксплуатационными характеристиками.  А если быть точнее, автоклавный газобетон превосходит их по всем показателям.

Рассмотрим основные показатели:

1. Стабильность качества автоклавного газобетона

Автоклавный газобетон изготавливается только на крупном производстве и на стройплощадку попадает в виде готовых блоков. Производство автоклавного газобетона в кустарных условиях невозможно, так как при изготовлении необходимо контролировать одновременно несколько десятков процессов и параметров. Современные заводы автоклавного газобетона имеют высокую степень автоматизации (около 95%) и практически исключают влияние человеческого фактора на производственный процесс.

Автоклавный газобетон производится согласно современному ГОСТу 2007 года, что подтверждается протоколами испытаний, продукция имеет сертификат качества, и клиент может быть уверен в надлежащем качестве.

Для производства пенобетона и неавтоклавного газобетона не требуется большого завода и огромных капиталовложений, что обеспечивает низкий порог входа в этот бизнес. На практике это означает, что имея небольшую бетонно-растворную установку, опалубку и пару низкоквалифицированных рабочих, можно организовать кустарное производство с нестабильными показателями качества, гордо назвав это заводом или фабрикой по производству стройматериалов. Обеспечить в таких условиях стабильность характеристик продукта практически невозможно, поскольку дозирование компонентов производится вручную и, как правило «на глаз», а старый ГОСТ, которому уже больше четверти века, допускает производство таких изделий.

1.jpg

2. Прочность

Ячеистые бетоны изготавливают различной плотности: от 400 до 800 кг/м3 классом прочности на сжатие от В1,5 до В7,5. Самыми ходовыми являются плотности D500 и D600, при этом автоклавный газобетон на этих плотностях имеет класс по прочности на сжатие B2,5 и B3,5 соответственно.

Неавтоклавные же материалы значительно проигрывают автоклавному газобетону по физическим свойствам и прочности при одинаковой плотности. Например, при плотности D600 они имеют прочность на сжатие в два раза ниже, чем у автоклавного газобетона! Кроме того, производители неавтоклавных материалов просто не могут выпускать строительные блоки с плотностью ниже D600, т.к. эти блоки не имеют прочности вообще, а применять их в строительстве недопустимо.

2.jpg

 3. Возможность крепления

Автоклавирование значительно повышает прочностные характеристики газобетона. В основание из автоклавного газобетона можно закрепить не только шкафы и полки, но и бойлеры, кондиционеры, вентилируемые фасады. Причем навесные фасады могут быть как из легкого композита так и из тяжелого керамогранита. Для этого применяются анкера с полиамидными распираемыми элементами. Например, один анкер 10х100 выдерживает нагрузку на вырыв по оси до 700кг, что вполне сравнимо с показателями полнотелого кирпича или тяжелого бетона.

Говорить о креплении в пенобетон или НЕавтоклавный газобетон просто не приходится. Гвоздь или шуруп просто вдавливается в стену руками, поэтому применение обычного механического крепежа здесь невозможно. Можно использовать для крепления НЕтяжелых предметов, например, зеркал или крючков для одежды, дорогостоящий двухкомпонентный химический анкер, что дает хоть какую-то иллюзию надежности. Но при навешивании на стену кухонного гарнитура даже использование «химии» не поможет, т.к. под весом шкафа с посудой произойдет разрушение неавтоклавного материала в месте крепления и из стены просто выпадет кусок блока.

3.jpg

4. Однородность

При производстве автоклавного газобетона газообразование происходит одновременно во всем объеме материала. Параллельно с газообразованием происходит отверждение. По мере роста массива на опалубку от закрепленных на ней специальных вибраторов периодически  подается импульс, который «встряхивает» массив, выгоняя из него крупные пузыри газа и исключая наличие раковин и воздушных мешков в готовых блоках. В результате поры одного размера и равномерно распределены по всему объему материала. Строительные блоки из автоклавного газобетона получают в результате разрезания большого массива, что гарантирует идеальное и одинаковое качество всех блоков.

Неавтоклавный газобетон и пенобетон получают введением в бетонную массу пены, газообразователей и перемешивая ее. В итоге часто случается, что пузырьки, как более легкие компоненты смеси, всплывают вверх, а более тяжелые наполнители оседают вниз. Получается неравномерное распределение пор в блоке, и за счет этого нет возможности добиться единых характеристик на разных блоках. Технология производства неавтоклавного газобетона исключает возможность встряхивания массива, поэтому наличие пузырей диаметром 50-70 мм – обычное дело. В таком материале часто возникают более холодные участки стены с выпадением конденсата на поверхности, а также трещины – в местах ослабления кладки крупными пузырями воздуха.

4.jpg

5. Усадка при высыхании

Набор прочности неавтоклавным ячеистым бетоном сопровождается значительной его усадкой, которая, в свою очередь, приводит к растрескиванию готовой кладки. Очень часто приходится видеть, как на недавно построенном и отделанном здании появляются множественные трещины, отслаивается отделочный слой, отваливается штукатурка. Эти процессы могут протекать в течение нескольких лет  –  того самого периода, пока идет «набор прочности».

Более того, трещинами испещрены блоки еще до того, как они уложены в кладку. Избавиться от усадки и трещин можно только автоклавированием, но в условиях кустарного производства это невозможно. Поэтому продавцы пенобетона и неавтоклавного газобетона идут на маркетинговые уловки, добавляя фибру (бумагу, пропитанную раствором серной кислоты и роданидом кальция) и называя это «армированным пенобетоном», устойчивым к растрескиванию. Для конечного потребителя, опять же кроме увеличения стоимости, фибра ничего не дает, ведь любой человек, даже не связанный со строительной индустрией, понимает, что если добавить бумагу в бетон, то никаких чудодейственных свойств, обещанных продавцами пенобетона, у материала не появится.

Нужно отметить, что чем легче (а как следствие, и теплее) материал, тем больше усадка. Опыт строительства показывает, что стены из неавтоклавных ячеистых бетонов  нельзя просто зашпаклевать и покрасить – внутри их приходится закрывать гипсокартоном, а для внешней отделки применять навесные фасады с креплением в перекрытие или кирпич.

Автоклавный газобетон полностью набрал прочность уже в процессе производства и автоклавирования, поэтому усадочные деформации ему не грозят.

К примеру, для автоклавного газобетона показатель усадки не превышает 0,4 мм/м, тогда как для неавтоклавных материалов он составляет в 10 раз больше - до 5 мм/м.

5.jpg

6. Экологичность

Автоклавный газобетон является абсолютно экологичным и аэропроницаемым материалом. Поэтому в доме из автоклавного газобетона всегда благоприятный микроклимат для проживания, сходный с климатом деревянного дома. Газобетон производится из минерального сырья, поэтому совершенно не подвержен гниению, а благодаря способности к регулированию влажности воздуха в помещении, полностью исключается вероятность появления на нем грибков и плесени.

Пенобетон может изготавливают из самого дешевого местного сырья: песка, отходов щебеночного производства, кроме того, в качестве пенообразователей применяются химические добавки, что, несомненно, снижает показатели экологичности дома из пенобетона. Также химические компоненты вносятся в блок с фиброй, пропитанной кислотами, хлоридами и роданидами. Даже присутствующие в небольших количествах, эти вещества способны выделяться и накапливаться в воздухе жилых помещений.

7. Геометрия

Точность геометрических размеров блоков из автоклавного газобетона регулируется современным ГОСТом, допустимые отклонения – по длине до 3 мм, по ширине до 2 мм, по толщине – до 1 мм. Блоки получаются путем резки струнами большого массива автоклавного газобетона и нарезать неровно на таком оборудовании просто нельзя.

Неавтоклавный газобетон и пенобетон разливают в опалубку с ограниченными циклами использования. Ввиду все той же экономии, опалубка используется в несколько раз дольше ее нормативного срока службы, а поскольку опалубка разборная, то в силу ее деформаций и износа собрать ее правильно с каждым разом становится все сложнее и сложнее – отсюда и отклонения по геометрии блоков. Для неавтоклавных газобетона и пенобетона отклонения геометрических размеров допускаются значительно больше - по толщине могут достигать 5 мм (старый ГОСТ 1989 года).

Большой разбег в геометрических размерах блоков из неавтоклавных материалов влечет ухудшение всех показателей кладки:

  • - увеличивается толщина слоя раствора, приводя к увеличению стоимости кладки
  • - увеличивается усадка кладки, т.к. помимо блоков усаживаются и толстые растворные швы
  • - образуются мостики холода из-за толстых растворных швов
  • - требуется трудоемкое выравнивание вертикальной поверхности стен
  • - расход цементно-песчаного раствора в 5-6 раз выше, чем кладочного клея
  • - увеличивается толщина и трудоемкость отделочных работ
  • - снижается прочность кладки
7.jpg

8. Теплоизоляционные свойства

Плотность пенобетона или газобетона напрямую влияет на их теплоизоляционные свойства и, чем материал плотнее,  тем теплоизоляция ниже. Пенобетон или неавтоклавный газобетон с низкой плотностью – это отличный теплоизоляционный материал, но прочность у него крайне низкая и применять его для кладки стен нельзя. В качестве конструктивного, особенно для несущих стен, требуется плотность выше, а значит, материал будет «холоднее». К примеру, для Иркутской области при использовании неавтоклавных материалов плотность ячеистого бетона должна быть минимум 700 кг/куб. метр. И без того невыдающиеся теплоизоляционные свойства значительно ухудшаются ведением кладки на цементно-песчаном растворе с толстыми швами. Это значит, что толщина стены из пенобетона или неавтоклавного газобетона с плотностью D700 для нормальной теплоизоляции без применения утеплителя должна быть около 65-70 см.

Стена из автоклавного газобетона обеспечивает такие же показатели теплозащиты и прочности при толщине всего 40 см, при этом достаточно плотности D400-D500. Объективно автоклавный газобетон обладает лучшими, чем неавтоклавные материалы, показателями прочности и теплоизоляции при меньшем весе.

8.jpg

Подведем итоги

  • - Автоклавный газобетон превосходит неавтоклавные материалы по физико-техническим свойствам благодаря автоклавной обработке.
  • - Автоклавный газобетон производится только на современных заводах со стабильным гарантированным качеством на уровне мировых стандартов.
  • - Автоклавный газобетон отличается от неавтоклавных материалов более высокой прочностью при меньшем весе.
  • - Автоклавный газобетон не дает усадки в процессе эксплуатации.
  • - Блоки из автоклавного газобетона отличаются точными размерами и равномерной плотностью массива.
  • - Автоклавный газобетон является искусственным природным минералом, что обуславливает высочайший уровень его экологичности.
  • - Применение автоклавного газобетона позволяет возвести теплоэффективный дом с однородной стеной 400 мм, не требующей утепления.

Строительство домов из неавтоклавных материалов дешевле только на первый взгляд. Если учесть плохую геометрию неавтоклавных материалов, худшие показатели теплоизоляции и прочности по сравнению с автоклавным газобетоном, необходимость в большем расходе кладочных и выравнивающих материалов, то выгода строительства из неавтоклавных  материалов отсутствует. 

krasn.bgazobeton.ru

Прочность ячеистых бетонов

Цель настоящей статьи: положить конец неутихающим и неаргументированным спорам на просторах Интернета, о том, какой стеновой материал лучше: пенобетон или газобетон. В этой статье не будет абстрактных рассуждений: мы приведем лишь проверенные факты, полученные при научных исследованиях и опубликованные в специальной литературе.

Пенобетон и газобетон относятся к группе легких бетонов называющихся ячеистыми бетонами. Ячеистый бетон производится из цементного или известкового раствора, в котором воздухсодержащие поры и капилляры образуются в результате действия газо- или пенообразователя. Свойства ячеистых бетонов напрямую зависят от вида, структуры и размеров воздухсодержащей матрицы в их структуре. Главным достоинством ячеистых бетонов является легкий вес, хорошие теплоизолирующие свойства, огнестойкость. Использование ячеистых бетонов позволяет экономить средства, как на конструктивных материалах, так и на утеплителях. Ячеистые бетоны производятся различной плотности – от 300 до 1800 кг/м3  в зависимости от назначения – структурный конструкционный газобетон, перегородочный материал или стеновой утеплитель. Интересно, что первоначально, пока их свойства не были изучены как следует, ячеистые бетоны использовались только в качестве утеплителя.

 

Виды ячеистых бетонов:

1.ГазобетонГазобетон производится путем добавления газообразующих компонентов в цементно-песчаный, известково-песчаный или в цементно-известково-песчаный раствор. В качестве компонентов газообразователей используется алюминиевая пудра, перекись водорода или отбеливатель и карбид кальция. В результате химических реакций высвобождаются соответственно водород, кислород или ацетилен. Газообразование приводит к увеличению объема материала. Выходя из материала, газ оставляет многочисленные открытые поры и капилляры относительно большого диаметра (по сравнению с другими видами ячеистых бетонов).

2. Пенобетон Производство пенобетона гораздо проще и дешевле, по сравнению с более высокотехнологичным газобетонным производством. В процессе производства не происходит никаких химических реакций. Пенобразование в бетонном растворе достигается использованием пенящихся поверхностно активных детергентов (моющих средств), сапонина, или гидролизатов белка (кератина).  Ячеистая структура пенобетона получается при смешивании пенообразующего агента с водой или с цементно-песчаным  раствором. Поскольку при твердении цементного камня газ не покидает материала, образующиеся ячейки имеют закрытую структуру. Из-за отсутствия избыточного давления газа, поры и капилляры образуются только за счет выхода (испарения) из структуры материала воды. Эти поры имеют очень небольшой размер по сравнению с порами в газобетоне.

3.Комбинированный ячеистый бетон Существует достаточно редкая комбинированная технология, сочетающая газообразование путем введения в состав алюминиевой пудры и пенообразователь (белковый клей). [Rudnai G. Light weight concretes. Budapest: Akademi Kiado, 1963.]  

Автоклавный и неавтоклавный ячеистый бетон Исходя из условий ухода за бетоном в процессе твердения (набора прочности) ячеистый бетон может быть автоклавным или неавтоклавным. Технология ухода за бетоном в процессе набора прочности напрямую определяет итоговую прочность бетона на сжатие, степень усадки, трещинообразование, влагопоглощение. Набор прочности бетона в стандартных условиях  в присутствии избытка влаги представляет собой достаточно длительный процесс.

Автоклавирование ячеистого бетона (процесс высокотемпературной обработки при повышенном давлении) приводит к потенцированию химических реакций между известью и силикатными / алюминиевыми составляющими материала. В результате происходит образование высокопрочных гидросиликатов кальция типа тоберморита и гидроалюмината или гидрогранатов различного состава. Автоклавирование бетона при температурах 140 - 250 С приводит к повышению устойчивости и прочности его пространственной коагуляционной структуры. Автоклавирование проводят в течение 8-16 часов, а режимы рабочего давления устанавливают впределах 4-16 МПа [RILEM recommended practice. Autoclaved aerated concrete/ Properties, testing and design. E&FN SPON, 1993.] . Автоклавировние значительно сокращает усадку бетона и трещинообразование. [Schubert P. Shrinkage behaviour of aerated concrete. In: Wittmann FH, editor. Autoclaved Aerated Concrete, Moisture and Properties. Amsterdam: Elsevier; 1983. p. 207-217.]

Микроструктура ячеистых бетонов Способ производства ячеистого бетона (газо- или пенообразование) напрямую оказывает влияние на микроструктуру материала, и, следовательно, на его физические свойства. Структура ячеистого бетона определяется его твердой пространственной микропористой матрицей и наличием макропор. Макропоры ячеистого бетона образуются благодаря расширению материала под воздействием давления газа. Микропоры образуются в стенках макропор ячеистых бетонов под воздействием влаги. [Alexanderson J. Relations between structure and mechanical properties of autoclaved aerated concrete. Cem Concr Res 1979;9:507-514.]  Микропоры или микрокапилляры в стенках между ячейками бетона имеют диаметр около 50 nm. В структуре ячеситых бетонов также присутствет некоторое количество макрокапилляров диаметром от 50 nm до 50 μm. Макропоры ячеистых бетонов имеют диаметр более чем 60 μm. Наличие макропор в стурктуре ячеистого бетона не снижает его механической прочности на сжатие [Там же]. Свойства ячеистых бетонов зависят от пропорционального распределения в структуре материала пор различного диаметра.  [Prim P, Witmann FH. Structure and water absorption of aerated concrete. In: Wittmann FH, editor. Proceedings Autoclaved Aerated Concrete, Moisture and Properties. Amsterdam: Elsevier; 1983. p. 43-53.] Структуры автоклавного ячеистого бетона и неавтоклавного газобетона имеют существенные различия, вызванные разницей в режимах гидратации связующего вещества, которые в итоге приводят к различиям в свойствах материалов. Неавтоклавный ячеистый бетон имеет в своем составе преимущественно мелкие поры и микрокапилляры, формирующиеся под воздействием испаряющейся воды, не задействованной при гидратации цемента или извести. [Tada S, Nakano S. Microstructural approach to properties of moist cellular concrete. In: Wittmann FH, editor. Proceedings Autoclaved Aerated Concrete, Moisture and Properties. Amsterdam: Elsevier; 1983. p. 71-89.]   

Пористость и свойства  ячеистых бетонов Поскольку пористость ячеистых бетонов может достигать 80%, то такие свойства ячеистых бетонов как прочность на сжатие, паропроницаемость, водопоглощение и степень усадки напрямую зависят от особенностей пористой структуры материала. Соотношение количества пор разного диаметра и структуры зависит от состава сырья и методов ухода за бетоном во время набора прочности.  Чем больше в структуре ячеистого бетона макропор, тем тоньше стенки ячеек, и тем меньше в составе материала микропор. Принудительная сушка ячеистого бетона в печах (не автоклавах) может приводить к разрушению ячеистой структуры [Day RL, Marsh BK. Measurement of porosity in blended cement pastes. Cem Concr Res 1988;18:63 -73]. Плотность ячеистых бетонов зависит от компактности и пористости. Чем больше в структуре ячеистых бетонов макропор, тем меньше плотность материала.

Проницаемость ячеистых бетонов Проницаемостью ячеистые бетоны обязаны своей пористой структуре. Проницаемость отличается у ячеистых бетонов с открытой и закрытой пористой структурой. Только непрерывно соединяющиеся поры с открытой структурой позволяют газам проникать через всю толщу ячеистого бетона. Для автоклавных ячеистых бетонов такой разницы не наблюдается: хотя структура пор у автоклавного пенобетона и автоклавного газобетона значительно отличается, характеристики проницаемости материалов остаются примерно одинаковыми. Наличие крупных пор не сказывается значительно на увеличении проницаемости материалов. [Jacobs F, Mayer G. Porosity and permeability of autoclaved aerated concrete. In: Wittmann FH, editor. Proceedings Advances in Autoclaved Aerated Concrete. A.A. Balkema, 1992. p. 71-76].

Химические характеристики При автоклавирвании ячеистого бетона кальций, соединяясь с силикогидратом образует тоберморит. В состав продуктов реакции входит смесь кристаллического, полукристаллического и аморфного тоберморита. Макрокапилляры выстилаются плоскими кристаллами тобеморита с двойной силикатной структурой. Эта структура остается неизменной во времени и при воздействии высоких температур [Mitsuda T, Chan CF. Anomalous tobermorite in autoclaved aerated concrete. Cem Concr Res 1977;7:191-194.]  

Кристаллическая структура неавтоклавного ячеистого бетона меняется в течении пооцесса гидратации: от игольчатых кристаллов к гексагональным и сблокированным кальцитным кристаллам [Tada S, Nakano S. Microstructural approach to properties of moist cellular concrete. In: Wittmann FH, editor. Proceedings Autoclaved Aerated Concrete, Moisture and Properties. Amsterdam: Elsevier; 1983. p. 71-89.]

Прочность ячеистого бетона на сжатие Состав бетонной смести, способ порообразования, структура пор, их размер, возраст бетона, и водонасыщение оказывают существенное влияние на прочность ячеистого бетона. Сокращение плотности ячеистого бетона из-за увеличения количества макропор приводит к снижению прочности материала [Pospisil F, Jambor J, Belko J. Unit weight reduction of  fly ash aerated concrete. In: Wittmann FH, editor. Advances in Autoclaved Aerated Concrete. A.A. Balkema, 1992. p. 43-52. ]  Прочность на сжатие ячеиcтого бетона уваеличивается линейно с увеличением плотности материала. Автоклавирование  значительно увеличивает прочность ячеистого бетона на сжатие за счет образования стабильных форм тоберморита [Rudnai G. Light weight concretes. Budapest: Akademi Kiado, 1963.]

Таблица. Физические характеристики автоклавного газобетона в зависимости от плотности материала*

Плотность в сухом состоянии (кг/м3)

Прочность на сжатие (МПа)

Модуль эластичности (кН/мм2)

Теплопроводность (Вт/м°C)

400

1,3-2,8

0,18-1,17

0,07-0,11

500

2,0-4,4

1,24-1,84

0,08-0,13

600

2,8-6,3

1,76-2,64

0,11-0,17

700

3,9-8,5

2,42-3,58

0,13-0,21

* N. Narayanan, K. Ramamurthy.  Structure and properties of aerated concrete: a review  Cement & Concrete Composites 22 (2000) 321±329, Таблица 2

 

Прочность неавтоклавного газобетона увеличивается на 30-80% в период между 28 днями и 6 месяцами с момента производства, частично за счет процессов карбонации [Hanecka C, Koronthalyova O, Matiasovsky P. The carbonation of autoclaved aerated concrete. Cem Concr Res 1997;27:589-99].  Прочность ячеистых бетонов на сжатие в значительной мере зависит от содержания влаги в материале и возрастает по мере просушки ячеистого бетона [Houst Y, Alou F, Wittmann FH. In¯uence of moisture content on the mechanical properties of autoclaved aerated concrete. In: Wittmann FH, editor. Proceedings Autoclaved Aerated Concrete, Moisture and Properties. Amsterdam: Elsevier; 1983. p. 219-233.] Прочность как автоклавных так и неавтоклавнх ячеистых бетонов возрастает при равной плотности с использованием золы [Ramamurthy K, Narayanan N. Infuence of  fly ash on the Conference on Waste as Secondary Sources of Building Materials. New Delhi: BMTPC, 1999. p. 276-282].или молотого сланца [Watson KL, Eden NB, Farrant JR. Autoclaved aerated materials from slate powder and portland cement. Precast Concr 1977:81-85 ] в качестве инертного наполнителя.

Порочность ячеистого бетона на растяжение и изгиб По разным данным прочность на разрыв для ячеистого бетона составляет от 10 до 35%  от прочности на сжатие. [Legatski LA. Cellular concrete, significance of tests and properties of concrete and concrete making materials. In: Klieger PK, Lamond JF, editors. ASTM Special Technical Publication. Philadelphia, No. 169C. p. 533-539.]

Прочность на изгиб для ячеистых бетонов низкой плотности стремится к нулю. Для ячеистых бетонов конструкционной плотности прочность на изгиб составляет 22-27% от прочности на сжатие. [Valore RC. Cellular concretes-physical properties. J Am Concr Inst 1954;25:817-836.]

Усадка ячеистых бетонов при высыханииУсадка ячеистых бетонов происходит из-за потери несвязанной в процессе гидратации воды. К образованию трещин больше склонны ячеистые бетоны с большим удельным количеством микропор (неавтоклавный пенобетон). [ Ziembika H. Effect of micropore structure on cellular concrete shrinkage. Cem Concr Res 1977;7:323-332.] Ячеистый бетон имеющий в составе один только цемент (без добавления извести) гораздо более склонен к образованию трещин. Добавление пластификаторов в цементные растворы не приводит к снижению трещинообразования. Набор прочности ячеистым бетоном без автоклавирования в недостатке влаги (менее 20% от объема)ведет к образованию трещин. Автоклавирование предупреждает образование трещин из-за образования прочных тоберморитовых кристаллических структур. При этом уменьшение пористости ведет к уменьшению прочности и увеличению образования трещин, т.к. пористость напрямую связана с количеством образованного кристаллического тоберморита.

Капилляры ячеистого бетона и водопоглощение Пористая и капиллярная структура ячеистого бетона обуславливает сильное взаимодействие материала с водой и водяными парами. В сухом состоянии поры ячеистого бетона открыты, и через них преобладает транспорт водяных паров. При увеличении влажности мелкие поры заполняются влагой, и транспорт водяных паров существенно снижается. При контакте с водой включаются механизмы капиллярного подсоса влаги за счет механизмов сорбции и гигроскопичности. [Prim P, Witmann FH. Structure and water absorption of aerated concrete. In: Wittmann FH, editor. Proceedings Autoclaved Aerated Concrete, Moisture and Properties. Amsterdam: Elsevier; 1983. p. 43-53.]

Долговечность ячеистых бетонов Автоклавный газобетон  преимущественно состоит из прочного стабильного тоберморита, который гораздо прочнее и долговечнее, чем материал неавтоклавных ячеистых бетонов (пенобетона).

С другой стороны высокая проницаемость автоклавного  газобетона для газов и влаги может привести к ускоренном разрушению основы материала. [RILEM recommended practice. Autoclaved aerated concrete /Properties, testing and design. E&FN SPON, 1993.]  Повреждение ячеистого бетона под воздействием замораживания возможно только при водонасыщении материала не ниже 20-40%. При большем водонасыщении и замораживании  ячеистый бетон разрушается. [Roulet CA. Expansion of aerated concrete due to frost /Determination of critical saturation. In: Wittmann FH, editor. Proceedings Autoclaved Aerated Concrete, Moisture and Properties. Amsterdam: Elsevier; 1983. p. 157-169].  Под воздействием атмосферного углекислого газа и процессов карбонизации плотность и прочность ячеистых бетонов может незначительно увеличиваться со временем.

Долговечность конструкций газобетонной кладки снижается при переувалжнении и промерзании при облицовке отапливаемых зданий кирпичом без вентилируемого воздушного зазора, либо при наружном утеплении газобетона паронепроницаемым ЭППС.

Теплопроводность ячеистых бетонов Теплопроводность ячеистого бетона напрямую зависит от плотности, влажности и состава материала. Более мелкие поры обеспечивают меньшую теплопроводность. [Bave G. Aerated light weight concrete-current technology. In:Proceedings of the Second International Symposium on Lightweight Concretes. London, 1980. ]  Увеличение влажности ячеистого бетона на 1% приводит к увеличению теплопроводности на 42%. Поэтому так важно не допускать увлажнения ячеистых бетонов при наружной отделке пенополистиролом и другими непаропронцаемыми материалами. [RILEM recommended practice. Autoclaved aerated concrete /Properties, testing and design. E&FN SPON, 1993]

Огнестойкость ячеистых бетоновОгнестойкость ячеистых бетонов гораздо выше, чем обычного тяжелого бетона. [Valore RC. Cellular concretes-physical properties. J Am Concr Inst 1954;25:817-836.]  Это в значительной мере обусловлено гомогенной структурой без разнородных включений, как в тяжелом бетоне, что приводит к образованию трещин из-за разного расширения элементов тяжелого бетона при нагревании. Лучшей устойчивостью к огню из-за меньшей газопроводимости и теплопроводности обладают ячеистые бетоны с закрытой ячеистой структурой.

Предварительные выводы:

  1. Способ производства ячеистого бетона и режима набора прочности влияет на ячеистую структуру материала и определяет его физические свойства.
  2. Физические свойства ячеистого бетона зависят от его плотности и влагонасыщения.
  3. Химический состав ячеистого бетона засвистит от режима ухода за бетоном при наборе прочности. Автоклавный ячеистый бетон гораздо более прочный и долговечный, по сравнению с неавтоклавным из-за образования прочной кристаллической решетки тоберморита.
  4. Автоклавный ячеистый бетон в 4-5 раз менее склонен к образованию трещин.

Окончательный вывод:

Критерием выбора стенового материала должен быть не способ образования ячеистой структуры бетона – пенообразование (пенобетон) или газообразование (газобетон). Критерием выбора  стенового материала должно быть наличие стадии автоклавирования при производстве  ячеистого бетона, так как неавтоклавные ячеистые бетоны обладают худшими физическими свойствами по сравнению с автоклавными.  

Прочтите о расчете толщины стены дома из газобетона.

dom.dacha-dom.ru

Автоклавная обработка изделий из ячеистого бетона. Теория и практика от «Aeroc International»

Посмотреть все статьи

Автоклавная обработка изделий из ячеистого бетона. Теория и практика от «Aeroc International»

www.aeroc.ru

Рассматривается технология автоклавной обработки изделий из ячеистого бетона.

Автоклавная обработка является одной из важнейших операций при изготовлении изделий из ячеистого бетона. Её режимы напрямую влияют на такие качественные характеристики готового продукта, как морозостойкость, усадка при высыхании, прочность при сжатии, внешний вид изделий (отколы, трещины). Базовое понимание процессов, происходящих в автоклаве, важно как при полностью автоматическом регулировании работы автоклава, так и при ручном управлении.

В данной статье мы кратко обобщим опыт, накопленный на заводах холдинга «Aeroc International» в автоклавной обработке.

Процесс изготовления ячеистого бетона

В этом разделе представлен краткий обзор всего процесса изготовления ячеистого бетона, поскольку определённые операции, входящие в этот процесс, напрямую влияют на поведение материала при автоклавной обработке.

Ячеистый бетон изготавливается из вяжущих, песка или золы, газообразователя и воды. Вяжущие — известь и цемент — содержат CaO, который имеет решающее значение для процесса. Песок или зола вводит в процесс SiO2. Из компонентов CaO, SiO2 и Н2О в автоклаве при воздействии высокого давления и высокой температуры образуется новый минерал — тоберморит (С4S5H5).

Собственно, образование новых минералов тоберморитовой структуры и возводит ячеистый бетон автоклавного твердения (в просторечии — газобетон) в совершенно другой ранг по сравнению с неавтоклавным ячеистым бетоном («пенобетоном»). Автоклавная обработка обеспечивает значительно более высокие физико-механические характеристики изделий из газобетона в сравнении с пенобетонными изделиями.

Автоклавная обработка обеспечивает значительно более высокие физико-механические характеристики изделий из газобетона в сравнении с пенобетонными изделиями.

Химические процессы, происходящие на разных стадиях производства, можно представить в следующем виде:

1. Выделение водорода на стадии образования пористой структуры в сырце:

 

 

 

 

 

2. Образование гидроксидов и гидросиликатов на стадии набора сырцом пластической (транспортной) прочности:

 

 

3. Образование новых минералов (тоберморита) на стадии автоклавной обработки:

 

 

Для наиболее полного протекания реакций в процессе автоклавной обработки необходимо, чтобы исходные материалы имели достаточно тонкодисперсную структуру. На стадии помола к кремнезёмистому компоненту добавляется гипсовый камень, который служит, в первую очередь, для регулирования реакций в автоклаве, а также ускоряет набор сырцом необходимой пластической прочности.

В смесителе сырьевые материалы перемешиваются, причём на качество перемешивания могут влиять как время смешивания, так и последовательность введения в смеситель сырьевых материалов. На выходе из смесителя должны быть обеспечены высокая гомогенность и определённая вязкость смеси.

Один из важнейших параметров — температура смеси на выходе из смесителя, которая очень сильно влияет на весь дальнейший процесс. При вспучивании газомассы и наборе сырцом необходимой для резки пластической прочности температура в массиве растёт. Огрубляя, можно сказать, что рост температуры продолжается примерно 1–1,5 ч; дальнейший прирост составляет лишь 1–3 C. Однако температура в массиве распределяется неравномерно, она уменьшается в слоях, которые контактируют с бортами заливочной формы и воздухом.

Так как температура массива и её распределение являются важными для некоторых этапов автоклавной обработки, хотим обратить особое внимание на то, что все заводы «Aeroc» оснащены тепловыми тоннелями, которые препятствуют охлаждению массивов через стенки заливочных форм. Кроме того, заливочные формы первого цикла всегда доводятся в тепловых тоннелях до температуры, примерно соответствующей температуре заливки.

При резке массивов большое внимание уделяется отсутствию сквозняков, особенно — в зимнее время. Разрезанные массивы также находятся в тепловых тоннелях, которые препятствуют понижению температуры поверхности сырца, так как передача тепла в ячеистый бетон при автоклавной обработке происходит тем быстрее, чем выше его температура при загрузке в автоклав.

Этапы автоклавной обработки

При разработке режимов автоклавной обработки и привязке их к конкретному технологическому циклу необходимо учесть массу факторов и особенностей того или иного производства: качество сырьевых материалов, параметры смеси (температура и отношение В/Т), номенклатура выпускаемой продукции (размеры, наличие армирования, плотность ячеистого бетона), расположение запариваемых массивов в автоклаве, условия и время выдержки перед автоклавной обработкой и другое.

Автоклавная обработка принципиально разбивается на четыре этапа:

(1) подготовка ячеистого бетона к подъёму давления;

(2) подъём давления;

(3) изотермическая выдержка ячеистого бетона при определённых температуре и давлении;

(4) сброс давления и подготовка изделий к выгрузке из автоклава.

Первый этап может включать (вместе или раздельно) следующие мероприятия:

1. Продувка или предварительный подогрев изделий без давления.

2. Предварительный подогрев изделий при давлении.

3. Вакуумирование.

Целью первого этапа является оптимальная подготовка сырца и среды в автоклаве ко второму этапу процесса — подъёму давления.

Из опыта нашей работы следует, что для изделий, внутренняя температура которых менее  80 C , наиболее предпочтительным из вышеуказанных мероприятий первого этапа является вакуумирование.

За счёт снижения давления в автоклаве вода, находящаяся в материале, начинает кипеть. Кипение воды начинается в самой теплой части массива, а именно — во внутренней его области. При дальнейшем снижении давления кипение продвигается от внутренней области массива наружу, что приводит к полному удалению воздуха из материала. При этом сам материал разогревается, температура по толще массива выравнивается. Необходимый вакуум зависит от конечной температуры массива и, как правило, составляет 0,5 бар. Максимальное разряжение достигается через 25–30 мин и далее поддерживается в течение 15–25 мин. Вакуумирование необходимо производить при горячем автоклаве (температура стенки автоклава должна быть не менее  80 C ). Эту температуру всегда легко сохранить в условиях постоянного производства. В противном случае перед началом процесса автоклавной обработки автоклав необходимо предварительно разогреть без продукции.

Вакуумирование необходимо производить при горячем автоклаве.

Причинами плохого вакуумирования могут быть неисправности, связанные с вакуумной задвижкой, системой автоматического управления, а также неудовлетворительное функционирование вакуумного насоса.

Второй этап – подъём давления – заключается в разогреве материала до температуры изотермической выдержки (как правило, 190–193 C). Разогрев происходит, главным образом, благодаря конденсации горячего пара на относительно холодной поверхности массивов, температура которых в начале процесса ниже температуры насыщенного пара. Образующийся конденсат переносит тепло в ячеистый бетон. Конденсация воды из пара может происходить как в виде капель, так и в виде закрытых водяных плёнок. В какой форме это происходит, зависит, в первую очередь, от разности температур между паром и ячеистым бетоном. Образование закрытых плёнок препятствует теплопередаче, что крайне нежелательно.

Для получения качественных изделий подъём давления следует проводить в три этапа:

(1) от –0,5 бар до 0 бар — 30–45 мин;

(2) от 0 бар до 3 бар — 30–45мин;

(3) от 3 бар до 12 бар — 65 мин.

Если на изделиях появляются отколы и трещины, то подъём давления на первых двух этапах необходимо вести медленнее. Однако если увеличение времени каждого из этапов до 60 мин не даёт должного эффекта, нужно вмешаться в процесс заливки: изменить параметры смеси.

При достижении ячеистым бетоном температуры  150 C начинается ускоренный экзотермический разогрев массивов за счёт энергии, освобождающейся при образовании гидросиликатов. Особое внимание следует обратить на то, что остановка подъёма давления и, тем более, его понижение могут привести к разрушению ячеистого бетона избыточным внутренним давлением. Особенно это характерно для армированных изделий и бетонов, плотность которых более 500 кг/м3.

 Остановка подъёма давления и, тем более, его понижение могут привести к разрушению ячеистого бетона избыточным внутренним давлением.

Изотермическая выдержка проводится в течение определённого времени при заданных давлении и температуре, которые обеспечивают достаточно глубокое протекание химических реакций образования новых минералов.

Оптимальная температура изотермии при производстве ячеистого бетона составляет 190–193 C, рабочее давление в автоклаве — 11,5–13 бар. Время выдержки зависит как от номенклатуры продукции (мелкоштучные блоки или армированные изделия), так и от её плотности. Для плотности 350–500 кг/м3 оптимальное время выдержки составляет 360 мин при давлении 12 бар.

Если сырьевые материалы подобраны правильно, а рецептура рассчитана корректно, в автоклаве на стадии выдержки происходит самопроизвольный рост давления без подачи в автоклав пара.

Сброс давления должен проводиться плавно. Продолжительность сброса давления зависит в основном от номенклатуры продукции и от плотности изделий. Для плотностей 350–500 кг/м3 оптимальное время сброса, по нашему опыту, составляет 90 мин. Для изделий плотностью 600 кг/м3 и более, а также для армированных изделий, продолжительность сброса увеличивается, а сам сброс проводится ступенчато с разными градиентами.

 

 

Рис 1. Изображение процесса в виде графика

 

Причины дефектов в материале, которые возникают при автоклавной обработке и пути их устранения

 1. Незатвердевшие участки массива (рис. 2).

 

Рис. 2.

Внешне выглядят как тёмные пятна, расположенные в средней части блока. Появляются в том случае…. (продолжение в следующей рассылке)

Д. Рудченко,Руководитель по развитию ООО «Аэрок СПб»

 

 

Автоклавная обработка изделий из ячеистого бетона. (продолжение)

www.ibeton.ru


Смотрите также