От чего зависит морозостойкость бетона. Бетон морозостойкость


Марка бетона по морозостойкости F

Вернуться на страницу «Классы и марки бетона»

Марка бетона по морозостойкости F

Применяемые марки бетона по морозостойкости:

тяжелый, напрягающий и мелкозернистый бетоны

F 50; F 75; F 100; F 150; F 200; F 300; F 400; F 500

легкий бетон

F25; F 35; F50; F 75; F100; F 150; F 200; F 300; F 400; F 500

ячеистый и поризованный бетоны

F15; F 25; F35; F 50; F 75; F 100

 

Марки бетона по морозостойкости и водонепроницаемости бетонных и железобетонных конструкций в зависимости от режима их эксплуатации и значений расчетных зимних температур наружного воздуха в районе строительства должны приниматься:

для конструкций зданий и сооружений (кроме наружных стен отапливаемых зданий) — не ниже указанных в таблице:

Условия работы конструкций Марка бетона, не ниже
характеристика режима расчетная зимняя температура наружного воздуха, °С по морозостойкости по водонепроницаемости
для конструкций (кроме наружных стен отапливаемых зданий) зданий и сооружений класса по степени ответственности
I II III I II III
1. Попеременное замораживание и оттаивание:
а) в водонасыщенном состоянии (например, конструкции, расположенные в сезоннооттаивающем слое грунта в районах вечной мерзлоты) Ниже минус 40 F300 F200 F150 W6 W4 W2
Ниже минус 20 до минус 40 включ. F200 F150 F100 W4 W2 Не нормируется
Ниже минус 5 до минус 20 включ. F150 F100 F75 W2 Не нормируется
Минус 5 и выше F100 F75 F50 Не нормируется
б) в условиях эпизодического водонасыщения (например, надземные конструкции, постоянно подвергающиеся атмосферным воздействиям) Ниже минус 40 F200 F150 F100 W4 W2 Не нормируется
Ниже минус 20 до минус 40 включ. F100 F75 F50 W2 Не нормируется
Ниже минус 5 до минус 20 включ. F75 F50 F35* Не нормируется
Минус 5 и выше F50 F35* F25* То же
в) в условиях воздушно-влажностного состояния при отсутствии эпизодического водонасыщения (например, конструкции, постоянно подвергающиеся воздействию окружающего воздухе, но защищенные от воздействия атмосферных осадков) Ниже минус 40 F150 F100 F75 W4 W2 Не нормируется
Ниже минус 20 до минус 40 включ. F75 F50 F35* Не нормируется
Ниже минус 5 до минус 20 включ. F50 F35* F25* То же
Минус 5 и выше F35* F25* F15** «
2. Возможное эпизодическое воздействие температуры ниже 0 °С:
а) в водонасыщенном состоянии (например, конструкции, находящиеся в грунте или под водой) Ниже минус 40 F150 F100 F75 «
Ниже минус 20 до минус 40 включ. F75 F50 F35* «
Ниже минус 5 до минус 20 включ. F50 F35* F25* «
Минус 5 и выше F35* F25* Не нормируется «
б) в условиях воздушно-влажностного состояния (например, внутренние конструкции отапливаемых зданий в период строительства и монтажа) Ниже минус 40 F75 F50 F35* «
Ниже минус 20 до минус 40 включ. F50 F35* F25* «
Ниже минус 5 до минус 20 включ. F35* F25* F15** «
Минус 5 и выше F25* F15** Не нормируется «

Марки бетона по морозостойкости и водонепроницаемости наружных стен отапливаемых зданий в зависимости от режима их эксплуатации и значений расчетных зимних температур наружного воздуха в районе строительства должны приниматься: не ниже указанных в таблице:

Условия работы конструкций Минимальная марка бетона по морозостойкости наружных стен отапливаемых зданий из бетонов
относительная влажность внутреннего воздуха помещения jint, % расчетная зимняя температура наружного воздуха, °С
легкого, ячеистого, поризованного тяжелого, мелкозернистого
для зданий класса по степени ответственности
I II III I II III
j int > 75 Ниже минус 40 F100 F75 F50 F200 F150 F100
Ниже минус 20 до минус 40 включ. F75 F50 F35 F100 F75 F50
Ниже минус 5 до минус 20 включ. F50 F35 F25 F75 F50 Не нормируется
Минус 5 и выше F35 F25 F15* F50 Не нормируется То же
60 < j int < 75 Ниже минус 40 F75 F50 F35 F100 F75 F50
Ниже минус 20 до минус 40 включ. F50 F35 F25 F50 Не нормируется
Ниже минус 5до минус 20 включ. F35 F25 F15* Не нормируется То же
Минус 5 и выше F25 F15* Не нормируется «
j int < 60 Ниже минус 40 F50 F35 F25 F75 F50 Не нормируется
Ниже минус 20 до минус 40 включ. Р 35 F25 F15* Не нормируется
Ниже минус 5до минус 20 включ. F25 F15* Не нормируется То же
Минус 5 и выше F15* Не нормируется «

 

 

saitinpro.ru

Морозостойкость |

Морозостойкость

Большинство исследований, выполненных по проблеме морозостойкости бетона, посвящено механизму разрушения бетона под действием переменного замораживания и оттаивания и влиянию на этот процесс различных факторов состава и структуры. Эти исследования позволили разработать научные основы прогнозирования и обеспечения необходимой стойкости бетона к совместному действию воды и знакопеременных температур. Они учитывают влияние на морозостойкость бетона химико-минералогического и вещественного состава цемента и заполнителей, их физико-механических характеристик, особенностей порового строения бетона и его связь с составом и структурой, условия уплотнения и твердения бетона, а также особенности его работы в конструкциях и сооружениях.

Известный исследователь морозостойкости бетона С.В. Шестоперов привел 25 характеристик качества исходных материалов, состава бетона и условий работы, различное сочетание которых обеспечивает различную морозостойкость. Эти развернутые рекомендации можно было бы еще дополнить, факторы влияния на морозостойкость можно объединить в группы, определяющие прочность бетона, величину капиллярной пористости, объем вовлеченного воздуха, состав цементного камня и качество контактного слоя.

При проектировании составов морозостойких бетонов обычно часть указанных факторов учитывается при выборе исходных материалов, остальные – при назначении объема вовлеченного воздуха и В/Ц. С этой целью используются рекомендации, изложенные в различных литературных источниках и нормативной литературе. Эти рекомендации часто весьма обобщены и не дают желаемого эффекта. В связи с этим представляется актуальной разработка расчетных зависимостей, связывающих морозостойкость бетона с факторами, учитываемыми при проектировании их составов. Все имеющиеся зависимости являются стохастическими и получены обработкой соответствующего экспериментального материала. Их можно разделить на две группы:

1) устанавливающие связь морозостойкости бетона (F) с отдельными факторами;

2) устанавливающие связь морозостойкости бетона с некоторыми интегральными параметрами. Одна из первых попыток получения факторных полиномиальных моделей морозостойкости бетона и использования их в задачах определения составов бетона сделана в работе. В качестве факторов в этих моделях избраны структурные характеристики – концентрация цементного камня и его В/Ц в бетоне (“истинное В/Ц”). Комплекс многофакторных полиномиальных моделей морозостойкости тяжелого бетона нормального и ускоренного твердения предложен и в других работах. Основной недостаток полиномиальных моделей морозостойкости также как и моделей других показателей свойств бетона – их локальность, адекватность лишь в том факторном пространстве, в котором планировался факторный эксперимент и повышенный риск при экстраполяции расчетов.

Зависимости второй группы содержат интегральные параметры, определяемые экспериментально на образцах бетона (средний размер пор, “фактор расстояния”, “льдистость” и др.) или вычисляемые “a priori” на основе факторов состава бетонной смеси.

Первые из указанных зависимостей второй группы могут быть использованы при подборе составов экспериментальными методами. Такие методы предполагают серию специальных опытов и, после изучения структуры и свойств полученных бетонов, выбор необходимых составов с учетом комплекса нормируемых показателей. Правомерность использования такого подхода возможна при наличии достаточного времени для необходимой технологической подготовки производства бетонных работ.

При выводе формулы принято допущение о том, что система воздушных пор является идеализированной. Она имеет тот же объем и количество воздушных пор, что и реальная система, но принимает эти поры одинаковыми и расположенными на равном расстоянии друг от друга. Фактор расстояния не учитывает существенное влияние В/Ц на морозостойкость бетона с искусственно вовлеченным воздухом. В нормах, например ФРГ, для получения морозостойкого бетона при искусственном воздухововлечении, требуется не только 0,25 мм, но и В/Ц 0,7. Для морозо-солестойкого бетона лимитируется 0,20 мм и В/Ц 0,6.

Г.Добролюбовым предлагается рассчитывать ряд показателей на основе микроскопического анализа тонких шлифов с учетом физико-механических характеристик бетона: его прочности и водопоглощения. В другой работе предложен критерий морозостойкости (КМ) бетона, учитывающий его открытую пористость (По.и), условно-замкнутую пористость (Пу.з) и объемное содержание льда (Ft).

Показатели, входящие в формулу, определяются экспериментально на образцах нормального твердения в возрасте 28 сут. Авторы показали наличие линейной зависимости между показателем КМ и морозостойкостью бетона.

Льдистость материала, определяемую отношением объемного содержания льда в бетоне к интегральной пористости доступной воде, в работе предложено использовать совместно с В/Ц как основной параметр морозостойкости:

N-N0 = l/(С-С0),

где N0 и С0 – соответственно предельные значения числа циклов замораживания и оттаивания и льдистости

С = l(В/Ц)1/3.

Для определения содержания льда в бетоне предлагаются различные экспериментальные методы. Наибольшей известностью пользуется калориметрический метод, в основе которого лежит зависимость между изменением температуры при переходе воды в лед и массой образовавшегося льда. Применяют также метод сверхвысоких частот, ультразвуковой и сорбционный методы. Наряду с рассмотренными, предложены и другие экспериментальные критерии морозостойкости.

Для проектирования составов бетонов с заданной морозостойкостью необходимы достаточно надежные зависимости, позволяющие переходить от требуемых проектных показателей к составам бетонных смесей на конкретных исходных материалах.

Исходный критерий для разработки расчетных параметров, позволяющих прогнозировать морозостойкость при проектировании составов был предложен Т. Уайтсайдом и Х. Свитом. Этот критерий известен как “степень насыщения”.

Было установлено, что при СН 0,91 быстро разрушается. Практика показывает, что ни критическая величина степени насыщения, ни даже меньшее ее значение, взятое с запасом (СН500).

Делению бетонов на классы по морозостойкости соответствует принятая во многих странах мира практика проектирования составов, когда устанавливается режим работы бетона и лимитируются ограничения по В/Ц и объему вовлеченного воздуха. Определение критического числа циклов замораживания и оттаивания при этом может производится после проектирования составов как контрольный тест. Принятые в нашей стране испытания бетона на морозостойкость до определения требуемых составов являются во многих случаях неэффективными, поскольку требуют продолжительного времени, часто носят запоздалый характер. Усилия технологов, направленные на достижение требуемой марки по морозостойкости, нередко оказываются напрасными, поскольку сам показатель марки является недостаточно обоснованным, как указывалось выше. Кроме того, стандартные методы позволяют определить лишь то, что морозостойкость бетона не ниже нормируемой, каково же действительное критическое число циклов, выдерживаемых бетоном остается, как правило, неизвестным. Это может приводить к завышению фактической морозостойкости по сравнению с требуемой и соответственно нерациональному расходованию цемента.

Уменьшение числа нормируемых ступеней морозостойкости должно способствовать повышению статистической эффективности их обеспечения, более широкому использованию расчетных зависимостей при проектировании составов бетонов.

midas-beton.ru

От чего зависит морозостойкость бетона

Курсовая

Дилатометрический метод ускоренного определения морозостойкости бетона

ГОСТ 10060.3-95

 

 

Выполнил: Ужахов Д. М.

Группа СМ-1

Проверил: Ковалева А.Ю.

 

 

Санкт-Петербург

СОДЕРЖАНИЕ

1. Описание свойства морозостойкости бетона

2. Для чего определяется морозостокость бетона

3. От чего зависит морозостойкость бетона

4. Область применения

5.Нормативные ссылки

6. Средства испытания и вспомогательные устройства

7. Порядок подготовки к проведению испытаний

8. Порядок проведения испытаний

Описание свойства морозостойкости бетона

Морозостойкостью называют способность насыщенного водой бетона сохранять прочность и не разрушаться при попеременном замораживании и оттаивании. Причиной разрушения является свойство воды при переходе в лед увеличиваться в объеме более чем на 9% и создавать внутреннее давление на стенки пор.

По морозостойкости бетон подразделяют на марки F50, F75, F100, F150, F200, F300, F400, F500, F600, F800 и F1000. Марка назначается в зависимости от вида конструкций и условий эксплуатации.

Морозостойкость бетона зависит от количества макропор его структуре, характера пористости, минерального и вещественного состава цементов, прочности бетона на растяжении. Уменьшение макропористости бетона повышает его морозостойкость. Это достигается снижением водоцементного отношения, введением в бетонную смесь химических добавок, позволяющих уменьшить ее водопотребность и снизить расход воды, применением незагрязненных заполнителей оптимального состава с минимальной водопотребностью, созданием благоприятных температурно-влажностных условий твердения, качественным уплотнением бетонной смеси, а также замораживанием бетона более позднем возрасте, когда за счет образования повышенного количества гидратных веществ увеличивается его плотность.

Повысить морозостойкость бетона можно изменением характера пористости. Достигается это введением в бетонную смесь воздухововлекающих добавок. Необходимо создать 4-6% очень мелких резервных пор, не заполняемых водой при обычном насыщении, но заполняемых под давлением замерзающей воды. Наиболее эффективны гидрофобные воздухововлекающие добавки ГКН-10, ГКН-11, которые уменьшают водопоглощение бетона.

Существенное влияние на морозостойкость бетона оказывает вид применяемого цемента. Наибольшую морозостойкость имеют бетоны на портландцементе без минеральных добавок с содержанием минерала С3А до 5%. Их применяют для гидротехнических сооружений зоны переменного уровня воды в суровых климатических условиях. Еще более высокую морозостойкость имеют бетоны на глиноземистом цементе.

Бетоны на цементах сложного вещественного состава имеют пониженную морозостойкость. Особенно пуццолановый портландцемент с активными добавками осадочного происхождения.

При давлении льда на стенки пор бетона при замораживании возникают напряжения растяжения. Поэтому все мероприятия, увеличивающие предел прочности бетона на растяжение, повышают его морозостойкость.

Для чего определяется морозостокость бетона

Большинство исследований, выполненных по проблеме морозостойкости бетона, посвящено механизму разрушения бетона под действием переменного замораживания и оттаивания и влиянию на этот процесс различных факторов состава и структуры. Эти исследования позволили разработать научные основы прогнозирования и обеспечения необходимой стойкости бетона к совместному действию воды и знакопеременных температур. Они учитывают влияние на морозостойкость бетона химико-минералогического и вещественного состава цемента и заполнителей, их физико-механических характеристик, особенностей порового строения бетона и его связь с составом и структурой, условия уплотнения и твердения бетона, а также особенности его работы в конструкциях и сооружениях.

От чего зависит морозостойкость бетона

5 см. По­этому для надлежащего эффекта необходимо обеспечит Морозостойкость бетона зависит от его строения, особенно от характера пористости, так'как последний будет определять объ­ем и распределение льда, обра­зующегося в теле бетона при от­рицательных температурах, и, следовательно, значение возни­кающих напряжений и интенсив­ность протекания процесса ос­лабления структуры бетона.

В микропорах бетона разме­ром 10™5 см обычно содержится

связанная Вода, которая не переходит в лед даже при очень низ­ких температурах (до —70°С), поэтому микропоры не оказывают заметного влияния на морозостойкость бетона. Последняя глав­ным образом зависит от объема макропор в бетоне и от их строения.

Существует два различных способа повышения морозостойко­сти бетона: 1) повышение плотности бетона, уменьшение объема макропор и их проницаемости для воды, например за счет сниже­ния В/Ц, применения добавок, гидрофобизирующих стенки пор, или кольматации пор пропиткой специальными составами; 2) со­здание в бетоне с помощью специальных воздухововлекающих до­бавок резервного объема воздушных пор (более 20% от объема замерзающей воды), не заполняемых при обычном водонасыще-нии бетона, но доступных для проникания воды под давлением, возникающим при ее замерзании. Зависимость морозостойкости от водоцементного отношения приведена на рис. 7.4. Обычно для получения достаточно морозостойкого бетона В/Ц должно быть менее 0,5.

Весьма эффективным и сравнительно простым повышением мо­розостойкости является применение воздухововлекающих доба­вок.

Для получения морозостойкого бетона необходимо, чтобы рас­стояние между пузырьками воздуха, т. е. толщина прослоек меж­ду соседними воздушными порами не превышало 0,02ь, не толь­ко определенный объем воздухововлечения, но и получение воз­душных пор возможно меньшего размера, так как это позволяет уменьшить их общий объем и способствует повышению морозо­стойкости бетона при наименьшем снижении его прочности вслед­ствие воздухововлечения. Обычно в бетоне с воздухововлекающи-ми добавками удельная поверхность пор, характеризующая их размеры, составляет 1000...2000 см2/см3, размер пор — 0,005... 0,1 см, а расстояние между ними не превышает 0,025 см.

Оптимальный объем вовлеченного воздуха составляет 4...6% и определяется расходом цемента, воды и крупного заполнителя. Объем увеличивается при понижении крупности заполнителя и повышении расхода цемента и воды.

 

Область применения.

Настоящий стандарт распространяется на все виды бетонов, кроме бетонов дорожных и аэродромных покрытий, и устанавливает базовый (первый) метод определения морозостойкости

Нормативные ссылки.

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 10060.0-95 Бетоны. Методы определения морозостойкости. Общие требования.

ГОСТ 10180-90 Бетоны. Методы определения прочности по контрольным образцам.

ГОСТ 23732-79 Вода для бетонов и растворов. Технические условия.

studopedya.ru

Как повысить морозостойкость бетона F200, газобетона, асфальтобетона

Многие из тех, кто строит дома в климатическом поясе с регулярными похолоданиями, интересуются, как повысить морозостойкость бетона.  Данный вопрос является весьма актуальным, поскольку сильные понижения температуры, а тем более – ее резкие перепады приводят к повышенному износу конструкций и ускоряют процесс их разрушения.

Ниже мы рассмотрим, что происходит с бетоном при его замерзании, и как предотвратить негативные последствия этого процесса.

Если оставить материал без защиты, то после нескольких зим он будет выглядеть примерно так

Если оставить материал без защиты, то после нескольких зим он будет выглядеть примерно так

Процессы в материале

Чтобы понять, от чего зависит устойчивость цементного раствора к низким температурам и как можно ее улучшить, следует изучить процессы, которые протекают в самом материале. И здесь нужно отметить, что при длительном воздействии холода бетон стремительно теряет прочность, особенно в поверхностной части.

На сегодняшний день существует две гипотезы, объясняющие это явление:

  • Согласно одной точки зрения, причиной разрушения материала изнутри становятся кристаллы льда. Влага, которая просачивается в поры материала, под воздействием низких температур замерзает, увеличиваясь в объеме примерно на 10-12%. Ледяные включения воздействуют на стенки пор, разрушая их и снижая плотность раствора.
  • Согласно другим утверждениям, основным вредоносным фактором является не лед сам по себе, а та жидкость, которая остается в капиллярах при замерзании. Лед давит на остатки воды, которые практически не сжимаются, и они разрушают каналы диаметром от 5 до 100 нанометров.
Фото пор, увеличившихся при замерзании воды

Фото пор, увеличившихся при замерзании воды

Обратите внимание! Несмотря на то, что в среде специалистов большим авторитетом пользуется вторая гипотеза, обе они не противоречат друг  другу. В любом случае основной причиной называют увеличение объема жидкости при превращении в лед.

  • Важным в данном случае является и тот факт, что расширяющаяся жидкость и лед заполняют поры фиксированного, и при этом достаточно малого объема. Именно по этой причине морозостойкость газобетона будет выше, чем у полнотелых составов из цемента аналогичной марки: резервный объем полостей позволяет компенсировать возникающие нагрузки.

Нужно отметить, что разрушение конструкций за счет возникающих внутренних напряжений происходит неравномерно:

  • Вначале нарушается форма выступающих граней, отмечается также скалывание углов.
  • Затем возникают микротрещины на плоских участках открытых поверхностей, которые вскоре объединяются в большие поврежденные участки. Это может привести как к шелушению бетона, таки к образованию крупных выбоин.
  • На третьей стадии жидкость проникает в глубинные структуры конструкции, и ее накопление в крупных трещинах провоцирует сильные разрушения.
Разрушение, начинающееся с острых граней

Разрушение, начинающееся с острых граней

Отдельно стоит отметить, что интенсивность воздействия усиливается и за счет того, что разные компоненты бетона имеют разный коэффициент температурной деформации. Отличия в изменении объема цементного монолита, минерального заполнителя и стальной арматуры приводят к тому, что со временем в местах их контакта формируются зоны с пониженной плотностью.

Анализ материала

Показатели устойчивости к холоду

Под морозостойкостью обычно понимают способность материала выдерживать низкие температуры без разрушения и необратимых деформаций. Для цифрового обозначения этого параметра используется такая величина как класс бетона по морозостойкости (F) – количество циклов замерзания/размерзания, которое может выдержать бетон данной марки до того момента, когда его прочность на сжатие не снизится на 5 %.

Динамика трещины при многократном оттаивании

Динамика трещины при многократном оттаивании

Таким образом, морозостойкость бетона F200 означает, что до начала ощутимой потери прочности материал может замерзнуть и оттаять не менее 200 раз, что является достаточно существенным показателем. Такие бетоны можно с успехом применять в средней полосе России, для которой зимой характерны частые перепады температуры.

Обратите внимание! Морозостойкость асфальтобетона и дорожного покрытия на цементном связующем определяется несколько иначе: материал должен утратить не более 5% массы.

Поскольку способность сопротивляться низким температурам во многом зависит от того, насколько прочным является само основание, существует прямая связь между классом материала и таким показателем как марка бетона по морозостойкости.  Наиболее распространенные составы и их характеристики приводятся в таблице:

F, кол-во циклов Класс бетона Марка бетона
50 В7,5 – В12,5 М100-150
100 В15 – В20 М200-250
200 В25 М300-350
300 В30 М400
Более 300 В35 – В45 М450-600

Как видите, зависимость вполне очевидна. Чем выше прочность материала (соответственно, больше будет и его цена), тем дольше и эффективнее он будет противостоять замерзанию.

 Определение характеристик

Тестирование проб

Тестирование проб

Определение морозостойкости бетона по ГОСТу  (ГОСТ 10060.0) осуществляется таким способом:

  • Из партии бетона отбирается проба средней структуры (т.е. без добавления или удаления наполнителя).
  • Из данной пробы в формы отличаются образцы – кубы с ребром 100или 200 мм.
  • Образец просушивается в течение 28 суток для набора прочности, после чего в течение 4 суток насыщается водой.
  • Затем бетонные кубы помещают в морозильную камеру, где их подвергают попеременному замораживанию ( — 180С) и оттаиванию (+180С).
  • После требуемого количества циклов выполняется исследование механических свойств материала с использованием пресса.
  • На основании изменения показателя прочности на сжатие в зависимости от продолжительности температурного воздействия делается вывод о степени холодостойкости материала.

Обратите внимание! Также допускается ускоренное тестирование при многократном или однократном замораживании с последующим расчетным определением параметров.

Устройство для тестирования образцов после заморозки

Устройство для тестирования образцов после заморозки

Для облегчения работы можно использовать специальный прибор для определения морозостойкости бетона. Подобные устройства комплектуются измерительными камерами и эталонными образцами, что позволяет получать информацию об эксплуатационных свойствах материала с минимумом трудозатрат.

Также для определения холодостойкости можно применять ультразвуковой метод по ГОСТ 26134-84. Он менее трудоемок в реализации, но предполагает использование довольно сложного оборудования, потому своими руками здесь справиться не получится – придется обращаться к специалистам.

Повышение сопротивления низким температурам

Состав с противоморозными характеристиками

Состав с противоморозными характеристиками

При необходимости можно изготовить морозостойкий бетон своими руками.

Для этой  цели применяются такие методики:

  • Во-первых, следует качественно уплотнять раствор при заливке. При уплотнении уменьшается пористость материала, а значит, снижается и объем жидкости, которая попадет внутрь бетона при его насыщении.

Обратите внимание! Для этой цели штыкования недостаточно – желательно использовать виброуплотнитель большой мощности.

  • Во-вторых, повышение морозостойкости бетона осуществляется за счет формирования дополнительных внутренних полостей. При этом в раствор добавляется газообразующий или порообразующий компонент, который обеспечивает закладку в материале микроскопических пузырьков.

Совет! Оптимальный объем вовлеченного воздуха при этом составляет от 4 до 6% от общего объема бетона.

  • В-третьих, можно использовать специальные добавки, которые повышают устойчивость уже полимеризованного бетона к низким температурам. К таким добавкам относят соли кальция, а также карбамид (мочевину) – они снижают льдистость материала за счет уменьшения плотности замерзающей воды. Образовавшийся при замерзании концентрированного солевого раствора чешуйчатый лед оказывает менее разрушительное воздействие на стенки пор.
  • Наконец, в ряде случаев достаточно просто защитить поверхность от прямого контакта с влагой. Здесь могут применяться как полимерные пропитки-силинги, так и фасадные краски, образующие плотную пленку.
Нанесение покрытия, снижающего водопоглощение

Нанесение покрытия, снижающего водопоглощение

Вывод

Приведенная в статье информация о том, что происходит в растворе при его замерзании, как определяется морозостойкость бетона по ГОСТу, и что можно сделать, чтобы ее повысить, является весьма актуальной. Длительное воздействие низкой температуры, а также многократное замораживание и оттаивание способно буквально за несколько лет снизить прочность конструкции из бетона практически вдвое.

Если вы хотите знать, как это предотвратить — внимательно изучите приведенные выше рекомендации, а также просмотрите видео в этой статье.

masterabetona.ru


Смотрите также