От чего зависит коэффициент теплопроводности бетона: влияние плотности и заполнителей, классификация бетонов, строительство. Бетон теплопроводность


СНиП 23-02 Расчетные теплотехнические показатели бетонов на искуственных пористых заполнителях. Керамзитобетон, шунгизитобетон, перлитобетон, шлакопемзобетон..., теплоемкость, теплопроводность и теплоусвоение в зависимости от плотности и влажности, паропр

tehtab.ru

Материал

Характеристики материалов в сухом состоянии

Расчетные коэффициенты (при условиях эксплуатации по СНиП 23-02)

плот- ность, кг/м3

удельная тепло- емкость, кДж/(кг°С)

коэффи- циент тепло- провод- ности, Вт/(м°С)

массового отношения влаги в материале, %

теплопро- водности, Вт/(м°С)

тепло- усвоения (при периоде 24 ч), Вт/(м2°С)

паропро- ницае- мости, мг/(мчПа)

А

Б

А

Б

А

Б

А, Б

Керамзитобетон на керамзитовом песке и керамзитопенобетон 1800 0.84 0.66 5 10 0.8 0.92 10.5 12.33 0.09
Керамзитобетон на керамзитовом песке и керамзитопенобетон 1600 0.84 0.58 5 10 0.67 0.79 9.06 10.77 0.09
Керамзитобетон на керамзитовом песке и керамзитопенобетон 1400 0.84 0.47 5 10 0.56 0.65 7.75 9.14 0.098
Керамзитобетон на керамзитовом песке и керамзитопенобетон 1200 0.84 0.36 5 10 0.44 0.52 6.36 7.57 0.11
Керамзитобетон на керамзитовом песке и керамзитопенобетон 1000 0.84 0.27 5 10 0.33 0.41 5.03 6.13 -
Керамзитобетон на керамзитовом песке и керамзитопенобетон 800 0.84 0.21 5 10 0.24 0.31 3.83 4.77 -
Керамзитобетон на керамзитовом песке и керамзитопенобетон 600 0.84 0.16 5 10 0.2 0.26 3.03 3.78 0.26
Керамзитобетон на керамзитовом песке и керамзитопенобетон 500 0.84 0.14 5 10 0.17 0.23 2.55 3.25 0.3
Керамзитобетон на кварцевом песке с поризацией 1200 0.84 0.41 4 8 0.52 0.58 6.77 7.72 0.075
Керамзитобетон на кварцевом песке с поризацией 1000 0.84 0.33 4 8 0.41 0.47 5.49 6.35 0.075
Керамзитобетон на кварцевом песке с поризацией 800 0.84 0.23 4 8 0.29 0.35 4.13 4.9 0.075
Керамзитобетон на перлитовом песке 1000 0.84 0.28 9 13 0.35 0.41 5.57 6.43 0.15
Керамзитобетон на перлитовом песке 800 0.84 0.22 9 13 0.29 0.35 4.54 5.32 0.17
Шунгизитобетон 1400 0.84 0.49 4 7 0.56 0.64 7.59 8.6 0.098
Шунгизитобетон 1200 0.84 0.36 4 7 0.44 0.5 6.23 7.04 0.11
Шунгизитобетон 1000 0.84 0.27 4 7 0.33 0.38 4.92 5.6 0.14
Перлитобетон 1200 0.84 0.29 10 15 0.44 0.5 6.96 8.01 0.15
Перлитобетон 1000 0.84 0.22 10 15 0.33 0.38 5.5 6.38 0.19
Перлитобетон 800 0.84 0.16 10 15 0.27 0.33 4.45 5.32 0.26
Перлитобетон 600 0.84 0.12 10 15 0.19 0.23 3.24 3.84 0.3
Шлакопемзобетон (термозитобетон) 1800 0.84 0.52 5 8 0.63 0.76 9.32 10.83 0.075
Шлакопемзобетон (термозитобетон) 1600 0.84 0.41 5 8 0.52 0.63 7.98 9.29 0.09
Шлакопемзобетон (термозитобетон) 1400 0.84 0.35 5 8 0.44 0.52 6.87 7.9 0.098
Шлакопемзобетон (термозитобетон) 1200 0.84 0.29 5 8 0.37 0.44 5.83 6.73 0.11
Шлакопемзобетон (термозитобетон) 1000 0.84 0.23 5 8 0.31 0.37 4.87 5.63 0.11
Шлакопемзопено- и шлакопемзогазобетон 1600 0.84 0.47 8 11 0.63 0.7 9.29 10.31 0.09
Шлакопемзопено- и шлакопемзогазобетон 1400 0.84 0.35 8 11 0.52 0.58 7.9 8.78 0.098
Шлакопемзопено- и шлакопемзогазобетон 1200 0.84 0.29 8 11 0.41 0.47 6.49 7.31 0.11
Шлакопемзопено- и шлакопемзогазобетон 1000 0.84 0.23 8 11 0.35 0.41 5.48 6.24 0.11
Шлакопемзопено- и шлакопемзогазобетон 800 0.84 0.17 8 11 0.29 0.35 4.46 5.15 0.13
Бетон на доменных гранулированных шлаках 1800 0.84 0.58 5 8 0.7 0.81 9.82 11.18 0.083
Бетон на доменных гранулированных шлаках 1600 0.84 0.47 5 8 0.58 0.64 8.43 9.37 0.09
Бетон на доменных гранулированных шлаках 1400 0.84 0.41 5 8 0.52 0.58 7.46 8.34 0.098
Бетон на доменных гранулированных шлаках 1200 0.84 0.35 5 8 0.47 0.52 6.57 7.31 0.11
Аглопоритобетон и бетоны на топливных (котельных) шлаках 1800 0.84 0.7 5 8 0.85 0.93 10.82 11.98 0.075
Аглопоритобетон и бетоны на топливных (котельных) шлаках 1600 0.84 0.58 5 8 0.72 0.78 9.39 10.34 0.083
Аглопоритобетон и бетоны на топливных (котельных) шлаках 1400 0.84 0.47 5 8 0.59 0.65 7.92 8.83 0.09
Аглопоритобетон и бетоны на топливных (котельных) шлаках 1200 0.84 0.35 5 8 0.48 0.54 6.64 7.45 0.11
Аглопоритобетон и бетоны на топливных (котельных) шлаках 1000 0.84 0.29 5 8 0.38 0.44 5.39 6.14 0.14
Бетон на зольном гравии 1400 0.84 0.47 5 8 0.52 0.58 7.46 8.34 0.09
Бетон на зольном гравии 1200 0.84 0.35 5 8 0.41 0.47 6.14 6.95 0.11
Бетон на зольном гравии 1000 0.84 0.24 5 8 0.3 0.35 4.79 5.48 0.12
Вермикулитобетон 800 0.84 0.21 8 13 0.23 0.26 3.97 4.58 0
Вермикулитобетон 600 0.84 0.14 8 13 0.16 0.17 2.87 3.21 0.15
Вермикулитобетон 400 0.84 0.09 8 13 0.11 0.13 1.94 2.29 0.19
Вермикулитобетон 300 0.84 0.08 8 13 0.09 0.11 1.52 1.83 0.23

Теплопроводность ячеистого бетона

Ячеистый бетон широко применяется в современном строительстве, а в частности, теплоизоляции. Является разновидностью лёгкого бетона, имеет пористую структуру, его поры заполнены воздухом. Бетон ячеистый – это искусственный стройматериал, созданный на основе минеральных вяжущих и кремнезёмистого заполнителя.

Его массовое использование связано с повышением требований к показателям переноса тепла стеновых конструкций на фоне роста цены на энергоносители. Бетон этого типа объединяет свойства камня и дерева, в первую очередь относительно теплоизоляции и теплосбережения при условиях грунтовки. Наиболее популярными подвидами ячеистого бетона являются газобетон и пенобетон. Чтобы понять, насколько выгодно использовать те или иные виды ячеистого бетона в качестве утеплителя, нужно для начала разобраться с понятием теплопроводности и показателями данного материала.

teploprovodnost2.jpgОпределение теплопроводности ячеистого бетона

Теплопроводность пористого (ячеистого) соединения характеризует количество тепла, переносимого через 1 м3 материала со стороной 1 м2 за 1 час, с одной грани материала на его противоположную грань, при разности температур между ними в 1 градус.

Самая важная характеристика ячеистого бетона - это коэффициент теплопроводности (λ). Его значение зависит от следующих характеристик:

  • качественные и количественные параметры пористости;

  • влажность материала;

  • плотность материала;

  • теплопроводность матрицы - определяется компонентами сырья, применяемого для его изготовления.

λ0 – это значение теплопроводности для сухого бетона. Нормируется российским ГОСТом 25485-89. При экспериментальном определении λ0 не учитывается влияние влагопереносимости материала, обусловленное градиентом температуры. Проанализировав значения λ0 для наиболее популярных видов ячеистых бетонов (область плотностей - 400 - 700 кг/м3), можно заметить, что значения λ0 для сухих бетонов практически не различаются между собой.

В зарубежных нормах проектирования и отечественных коэффициент теплопроводности имеет различные значения. В отечественных нормах его значения выше на 10 - 23% для бетонов, плотность которых составляет 600-800 кг/м и 1-5% для бетонов, плотностью 1000 кг/м.

Показатели влажности ячеистого бетона

Европейский и Международный комитеты по бетону, проходящие в 1977 году в Лондоне, в связи с существенными различиями в применении в строительстве и физико-техническими свойствами между бетонами на легких заполнителях и ячеистыми бетонами, создали рабочую группу по ячеистому бетону, которая выявила, что эксплуатационная влажность – его важнейший показатель. Значение влажности ячеистого бетона составляет 4-5% от его массы и устанавливается примерно через 2-3 года. Пределы значения отпускной влажности - 25 – 35%.

Способность внутренней влаги передавать тепло обуславливает основную теплопередачу. Ячеистый бетон имеет свойство линейно повышать теплопроводность, по мере увеличения такого показателя как сорбционное влагопотребление до 15%. Дальнейший рост этого показателя влияет уже несущественно.

Есть ряд особенностей эксплуатации ячеистого бетона для того, чтобы получать заявленную теплопроводность. Так, например, обязательно использовать грунтовку для предохранения стен от увлажнения. На наружных стенах грунтовка должна быт паропроницаемая.

Проектирование стен осуществляется в зависимости от климатической зоны и режима влажности помещений. Эти показатели определяются СНиПом II-3-79**. Норма для условий эксплуатации согласно СНиПу II-3-79**:

  • для условий А принято значение равновесной влажности ячеистого бетона - 8%;

  • для условий Б тот же показатель составляет 12%, что далеко от соответствия реальным условиям эксплуатации зданий.

Состав материала и другие факторы, влияющие на теплопроводность

Стенки пор ячеистого бетона образованы цементным камнем, что значительно увеличивает количество изолированных пустот и уменьшает теплоперенос. Показатели теплопроводности во многом зависят от размеров, формы и распределения пустот, и от состава наполнителей. В качестве наполнителя пустот используются зола, песок, известь, шлаки и др.

Также теплопроводимость зависит от массы материала в единице объема (плотности). В зависимости от марки бетона средней плотности проводимость увеличивается в интервале от 0,08 для марки Д- 300, до 0,38 для марки Д-1200. При чем для камня в золе и камня на песочной основе эти показатели отличаются.

Обязательно учитывать взаимосвязь между прочностью, плотностью и теплопроводимостью камней. К примеру, при плотности 400 кг/м3 - прочность на сжатие будет 1,3-2,8 Мпа; модуль эластичности – 0,18-1,17 кН/мм2; теплопроводность – 0,07-0,11 Вт/м°С. А при плотности 500 кг/м3 – 2,0-4,4 Мпа; 1,24-1,84 кН/мм2 ; 0,08-0,13 Вт/м°С соответственно. Рост количества пустот уменьшает прочность материала и его теплодиффузию.

Снижение коэффициента теплопроводности ячеистого бетона позволяет эффективно применять его для возведения наружных однослойных стен. Приведенное сопротивление теплопередаче стен для Москвы - 3,15 м °С/Вт. Ячеистый бетон (плотность 400 кг/м3) позволяет построить стену, толщина которой будет 0,4 м, плотность 500 кг/м3 достаточна для стены около 0,5 м.

Результаты исследований тепло физических свойств ограждающих конструкций из ячеистобетонных блоков показали, что устройство швов толщиной 2 мм снижает термическое сопротивление теплопередачи стены на 4-5 %, устройство швов толщиной 10 мм - на 20%, а устройство швов толщиной 20 мм - на 30-32%. Низкие показатели теплопередачи ячеистого бетона обеспечивают его широкое применение. При этом обязательно следует учитывать тот факт, что показатели передачи тепла сохраняются при условии влагозащищенности. Отсюда можно сделать вывод, что неправильное использование самого ячеистого бетона или, к примеру, блоков из него, может привести к низкой эффективности в плане энергосбережения. Поэтому обязательно требуется соблюдать технологию и тогда удастся здорово сэкономить на тепле в осенне-зимний период.

17.10.2016

bikton.ru

Коэффициент теплопроводности бетона В25, железобетона, газобетона, пенобетона

Способность различных бетонов сохранять тепло в помещении в первую очередь зависит от их плотности или внутренней структуры, то есть, материал делится на классы, например, B20 или В25. К тому же, в состав раствора могут входить различные заполнители, от которых тоже зависит термопередача у готовой продукции.

Теплопроводность материалов

Теплопроводность материалов

Обо всём этом мы поговорим ниже, а также продемонстрируем вам по нашей теме видео в этой статье.

Влияние плотности и заполнителей на термические свойства

Диаграмма теплопроводности материалов

Диаграмма теплопроводности материалов

Пояснение. Теплопроводностью материала называется его способность переносить внутреннюю энергию от горячих участков к холодным посредством хаотического движения молекул. Данное понятие является противоположностью термическому сопротивлению, которое означает способность верхних слоёв материала препятствовать распространению тепла.

Какие бывают бетоны

Примечание. Бетоном называют искусственный камень, получаемый при размешивании и твердении вяжущего компонента (в данном случае — цемент), воды, песка и более крупного заполнителя (щебень, гравий, керамзит, пластик). Его цена зависит от плотности материала и способа изготовления.

Монолитные ЖБ стены

Монолитные ЖБ стены

  1. Бетоны в первую очередь классифицируются по своей плотности, так они бывают: 1) особо лёгкие, где плотность составляет менее 500кг/м3; 2) лёгкие — от 500кг/м3 до 1800кг/м3; 3) тяжёлые — от 1800кг/м3 до 2500кг/м3; 4) особо тяжёлые — от 2500кг/м3 и выше.
  2. Также материал классифицируется по структуре и бывает: 1) крупнозернистым; 2) ячеистым; 3) поризованным; 4) плотным. При этом коэффициент теплопроводности железобетона, который относится к четвёртому классу, является самым высоким и составляет от 1,28 Вт/м*K до 1,51 Вт/м*K, то есть, чем выше плотность, тем легче и быстрее внутренняя энергия (тепло) передаётся на более холодные участки.
  3. Бетоны могут классифицироваться по виду вяжущего вещества:
  • цементные;
  • силикатные;
  • гипсовые;
  • шлакощелочные;
  • полимербетоны;
  • полимерцементные.

Безусловно, полимеры обладают наиболее низкой теплопроводностью, поэтому коэффициент теплопроводности полистиролбетона самый низкий — от 0,057Вт*⁰C до 0,2Вт*⁰C (в зависимости от плотности), то есть, ним можно утеплять помещение.

  1. Ну и, конечно, все ЖБИ классифицируются по назначению и бывают:
  • конструкционными;
  • конструкционно-теплоизоляционными;
  • теплоизоляционными;
  • гидротехническими;
  • дорожными;
  • химически устойчивыми.

Нас в данном случае интересует 2-ой и 3-ий пункты, где ЖБК при сравнительно малой толщине способны обеспечить не только несущую способность, но и сохранить тепло в помещении. Например, коэффициент теплопроводности пенобетона в зависимости от наполнителя (песок, зола) и назначения составляет от 0,08Вт*⁰C до 0,29Вт*⁰C, а коэффициент теплопроводности газобетона, учитывая те же параметры, от 0,072Вт*⁰C до 0,183Вт*⁰C.

Строительство

Сборные ЖБК

Сборные ЖБК

Заполнитель Масса (кг/м3) Средний коэффициент теплопроводности (Вт/м*⁰C)
Штыкованный бетон (цемент 165кг/м3)
Пемза 775 0,193
Кусковой пористый и доменный гранулированный шлак 1045 0,324
Котельный шлак 1190 0,314
Песок, котельный шлак 1450 0,461
Песок, кирпичный щебень 1660 0,620
Песок, гравий 2055 1,319
Трамбованный бетон (цемент 165кг/м3)
Пемза 864 0,24
Кусковой пористый и доменный гранулированный шлак 1140 0,327
Котельный шлак 1258 0,335
Песок, котельный шлак 1340 0,393
Песок, кирпичный щебень 1560 0,544
Песок, гравий 1816 0,733
Трамбованный бетон (цемент 245кг/м3)
Пемза 885 0,262
Кусковой пористый и доменный гранулированный шлак 1165 0,317
Котельный шлак 1300 0,348
Песок, котельный шлак 1375 0,42
Песок, кирпичный щебень 1820 0,7
Песок, гравий 2127 1,372

Таблица теплопроводности бетонов в сухом виде

Стены из пеноблоков. Фото

Стены из пеноблоков. Фото

Масса (кг/м3) Среднее количество ячеек/см2 (штук) Средний диаметр ячеек (мм) Средний коэффициент теплопроводности (Вт/м*⁰C)
253 221 0,63 0,069
282 53 1,28 0,087
314 23 1,86 0,101
368 201 0,64 0,088
373 161 0,71 0,088
366 88 0,97 0,098
370 60 1,17 0,102
415 186 0,66 0,096
415 123 0,81 0,102
420 42 1,38 0,112
563 284 0,51 0,129
539 202 0,61 0,11
559 145 0,71 0,127
580 94 0,89 0,14
611 300 0,49 0,14
633 70 1,07 0,154
620 22 1,79 0,158
913 313 0,41 0,217
927 58 0,96 0,234
956 22 1,53

Таблица теплопроводности пенобетонов в сухом виде

Керамзитобетонная кладка

Керамзитобетонная кладка

В настоящее время, благодаря изобилию материалов на строительном рынке, при строительстве дома своими руками можно выбрать наиболее «тёплые» элементы для кладки, что в дальнейшем скажется на стоимости эксплуатации (меньший расход энергоносителей для отопительных приборов). Например, коэффициент теплопроводности керамзитобетонных блоков с плотностью 1000кг/м3 составляет 0,41Вт/м⁰C, что вдвое меньше аналогичного показателя кирпичной кладки!

А вот коэффициент теплопроводности керамзитобетона с плотностью 1200кг/м3 будет больше — 0,52Вт/м⁰C и так далее, но любой из таких блоков подойдёт для малоэтажного строительства, следовательно, настоящий материал как нельзя лучше подходит для частного сектора.

Конечно, здесь может возникнуть проблема из-за более высокой стоимости, но можно также использовать более дешёвые ячеистые блоки с другим наполнителем из пено-, газо- или шлакобетона. Конечно, очень важно учитывать способность материала впитывать волу — чем она больше, тем хуже, так как мокрая кладка превосходно проводит тепло и в таких случаях потребуется дополнительная лицевая отделка с гидробарьером.

Заключение

При выборе материала для строительства дома вы можете ориентироваться на таблицы, приведенные в этой статье, и это будет для вас инструкция по теплопроводности. Но, тем не менее, для проектировки нужны общие расчёты, где учитывается не только возможность стен удерживать тепло, но также среднегодовая температура воздуха в регионе и вид отопления, которое вы будете использовать при эксплуатации здания.

masterabetona.ru


Смотрите также