Жаростойкие бетоны. Бетоны жаростойкие


Жаростойкие бетоны

Содержание

Введение

Материалы для производства жаростойких бетонов

Требования к материалам для изготовления жаростойких бетонов

Расчет состава жаростойкого бетона

Список использованной литературы

Введение

Жаростойкий бетон — это специальный бетон, способный не изменять требуемые физико-механические свойства при длительном воздействии высокой температуры (свыше 200°С). В зависимости от вяжущего вещества различают жаростойкие бетоны на портландцементе и шлакопортландцементе, на высокоглиноземистом и глиноземистом цементе и на жидком стекле.

Жаростойкий бетон предназначается для промышленных агрегатов (облицовки котлов, футеровки печей и т.п.) и строительных конструкций, подверженных нагреванию (например, для дымовых труб). При действии высокой температуры на цементный камень происходит обезвоживание кристаллогидратов и разложение гидроксида кальция с образованием СаО. Оксид кальция при воздействии влаги гидратируется с увеличением объема и вызывает растрескивание бетона. Поэтому в жаростойкий бетон на портландцементе вводят тонко измельченные материалы, содержащие активный кремнезем.

Виды жаростойких бетонов

По предельно допустимой температуре применения жаростойкие бетоны подразделяются на 14 классов:

Класс

Предельно допустимая температура применения, °С:

3

300

6

600

7

700

8

800

9

900

10

1000

11

1100

12

1200

13

1300

14

1400

15

1500

16

1600

17

1700

18

свыше 1800

По прочности на сжатие жаростойких бетонов в соответствии с СТ СЭВ 1406-78 установлены следующие классы: В1; В1,5; В2; В2,5; В3,5; В5; В7,5; В10; В12,5; В15; В20; В25; В30; В35; В40.

Различают жаростойкие бетоны следующих марок:

по средней плотности: D300; D400; D500; D600; D700; D800; D900; D1000; D1100; D1200; D1300; D1400; D1500; D1600; D1700; D1800;

по термической стойкости в водных теплосменах (бетоны плотной структуры со средней плотностью 1200-2900 кг/м3): Твд5, Твд10, Твд15, Твд25, Твд35, Твд40

по термической стойкости в воздушных теплосменах: Твз5, Твз10, Твз15, Твз20, Твз25 (бетоны плотной структуры 500-1100 кг/м3) Твз5, Твз10 (бетоны ячеистой структуры 600-1000 кг/м3)

по морозостойкости (бетоны плотной структуры со средней плотностью 1200-2900 кг/м3): F15, F25, F35, F50, F75

по водонепроницаемости (бетоны со средней плотностью 1200-2900 кг/м3): В2, В4, В6, В8

Для жаростойких бетонов марок средней плотности D300-D1100 термическая стойкость в водных теплосменах, морозостойкость и водонепроницаемость не нормируется. Для жаростойких бетонов марок по средней плотности D300 и D400 не нормируется термическая стойкость в воздушных теплосменах.

В зависимости от способа укладки и уплотнения бетонной смеси, различают жаростойкие бетоны: вибрированные, трамбованные, прессованные, торкретированные (нанесение пневмо- или механическим способом).

Материалы для производства жаростойких бетонов

Жаростойкий бетон изготовляют на портландцементе с активной минеральной добавкой (пемзы, золы, доменного гранулированного шлака, шамота).

Шлакопортландцемент уже содержит добавку доменного гранулированного шлака и может успешно применяться при температурах до 700°С. Портландцемент и шлакопортландцемент нельзя применять для жаростойкого бетона, подвергающегося кислой коррозии (например, действию сернистого ангидрида в дымовых трубах). В этом случае следует применить бетон на жидком стекле. Он хорошо противостоит кислотной коррозии и сохраняет свою прочность при нагреве до 1000°С.

Еще большей огнеупорностью (не ниже 1580°С) обладает высокоглиноземистый цемент с содержанием глинозема 65-80%; в сочетании с высокоогнеупорным заполнителем его применяют при температурах до 1700°С.

Столь же высокой огнеупорности позволяют достигнуть фосфатные и алюмофосфатные связующие: фосфорная кислота алюмофосфаты и магнийфосфаты.

Жаростойкие бетоны на фосфатных связующих можно применять при температурах до 1700°С, они имеют небольшую огневую усадку, термически стойки, хорошо сопротивляются истиранию.

Заполнитель для жаростойкого бетона должен быть не только стойким при высоких температурах, но и обладать равномерным температурным расширением.

Бескварцевые изверженные горные породы как плотные (сиенит, диорит, диабаз, габбро), так и пористые (пемза, вулканические туфы, пеплы) можно использовать для жаростойкого бетона, применяемого при температурах до 700°С.

Для бетона, работающего при температурах 700-900°С, целесообразно применять бой обычного глиняного кирпича и доменные отвальные шлаки с модулем основности не более 1, не подверженные распаду.

При более высоких температурах заполнителем служат огнеупорные материалы: кусковой шамот, хромитовая руда, бой шамотных, хроммагнезитовых и других огнеупорных изделий.

Требования к материалам для изготовления жаростойких бетонов

1. Вяжущее

В табл. 1 приведены виды вяжущих для жаростойкого бетона, нормативные документы, требованиям которых они должны отвечать, а также дополнительные требования, учитывающие специфику их применения в жаростойком бетоне.

Таблица 1

№ п.п.

Вяжущее

Нормативный документ

Дополнительные требования

1

2

3

4

1

Портландцемент, портландцемент с минеральными добавками, быстротвердеющий портландцемент

ГОСТ 10178

Марка цемента не ниже 400. Для бетонов с предельно допустимой температурой применения выше 300 °С употребляют только с тонкомолотой добавкой

2

Шлакопортландцемент

ГОСТ 10178

Марка не ниже 400. Необходимость введения тонко молотой добавки определяется величиной остаточной прочности бетона, которая должна быть не ниже требований табл. 9

3

Глиноземистый цемент

ГОСТ 969-77

Марка цемента не ниже 400

4

Высокоглиноземистый цемент

ТУ 21-20-60-84 и ТУ 6-03-339-78

Марка не ниже 400. Для бетонов, предназначенных для работы в условиях агрессивной водородной среды, содержание оксида железа не должно превышать 0,05 % и оксида кремнезема 0,1 %

5

Жидкое стекло силикат натрия растворимый

http://www.complexdoc.ru/ntd/483158

ГОСТ 13078

Модуль жидкого стекла 2,4-3. Модуль определяется по ГОСТ 13078-81*или по прил. 1. Плотность жидкого стекла 1,34-1,38г/см3

6

Ортофосфорная кислота

ГОСТ 10678

Концентрация ортофосфорной кислоты 50 или 70 % в зависимости от состава бетона. Методика разведения кислоты дана в прил.2

www.coolreferat.com

Жаростойкие бетоны - часть 2

mirznanii.com

№ п.п. Заполнитель Нормативные документы и требования дополнительные Содержание основных компонентов, % Рекомендуется применять для бетона
с предельно допустимой температурой применения, 0 С, не более с вяжущим
1 Из доменных отвальных шлаков ГОСТ 5578 СаО и MgO -в сумме не более 48, в том числе MgO - не более 10, сульфатов в пере-счете на SO3 -не более 5, свободных СаО и MgO -в сумме не более 2 700 Портландцемент, шлакопортландцемент
2 Аглопоритовые ГОСТ 11991 Свободных СаО и MgO -в сумме не более 2, карбонатов - не более 2 900 То же
3 Из боя глиняного кирпича - То же 800
4 Шлаковая пемза (средняя плотность не более 750кг/м3 ) ГОСТ 9760 Свободных СаО и MgO - в сумме не более 1, Fe2 O3 - не более 5,5; сульфатов в пересчете на SO3 - не более 0,3 800
5 Из топливных шлаков и золошлаковая смесь ГОСТ 25592 SiO2 и Аl2 О3 -в сумме не менее 75, СаО - не более 4, Потери при прокаливании не более 8, сульфатов в пересчете на SO3 -не более 3 800 Портландцемент, шлакопортландцемент
6 Из литого шлака (устойчивый против любого вида распада) ГОСТ 5578 СаО и MgO - в сумме не более 48, в том числе MgO -не более 10, сульфатов в пересчете на SO3 - не более 5, свободных СаО и MgO - в сумме не более 2 800 То же
7 Гранулированный шлак ГОСТ 5578 То же 600
8 Бетонный из лома жаростойких бетонов с шамотным заполнителем на портландцементе ТУ 49-80 СаО - не более 41, Аl2 О3 - не менее 14 1100 Портландцемент
9 Бетонный из лома жаростойких бетонов с шамотным заполнителем на жидком стекле ТУ 15-76 Na2 O - не более 4 1000 1200 Жидкое стекло с кремнефтористым натрием Жидкое стекло с нефелиновым шламом или саморассыпающимися шлаками
10 Шамотные кусковые или из боя изделий или из вторичных шамотных огнеупоров (лом амотный) ГОСТ 23037, ТУ 14-8-173 - 75 Аl2 О3 - 28 - 45, Fe2 O3 - не более 5,5 1000 1200 1300 1400 Жидкое стекло с кремнефтористым натрием Жидкое стекло с нефелиновым шламом или саморассыпающимися шлаками, портландцемент Глиноземистый цемент Высокоглиноземистый цемент, ортофосфорная кислота 70 %-й концентрации
11 Из шлаков ферромарганца, силикомарганца - SiO2 - 29 - 35, Al2 O3 - 8 - 9, CaO - 42 - 45, MgO - 7 - 8, MnO - 4,5 - 8, Fe2 O3 - 0,7 - 1, SO3 - 2,5 - 2,7 800 Жидкое стекло с саморассыпающимися шлаками
12 Карборундовые ТУ 14-261-73, ТУ 63-156-1-83 - 1100 Жидкое стекло с нефелиновым шламом или саморассыпающимися шлаками
13 Из предельного феррохрома - SiO2 -26 -35 1200 Глиноземистый цемент
14 Кордиеритовый ГОСТ 20419-83* Содержание минерала кордиерит не менее 80, MgO - в пределах 12-14, Fe2 O3 - не более 2,5 1100 Портландцемент, жидкое стекло с нефелиновым шламом или саморассыпающимися шлаками
15 Титаноглиноземистый - Al2 O3 - не менее 68, СаО - не более 17, ТiO2 - не более 12 1400 Высокоглиноземистый цемент
16 Хромо глиноземистый шлак - А12 Оз не менее 75, СаО - не более 10, MgO - не более 2, Сг2 О3 - не более 9 1600 То же
17 Периклазошпинельные - MgO - cв. 40 до 80, Al2 O3 -15 -55 1600 Жидкое стекло с отвердителями
18 Муллитокордиеритовые ГОСТ 20419-83** Кордиерита не менее 15, MgO -в пределах 3 -4, Fe2O3 - не более 2,5 1300 Глиноземистый цемент
19 Муллитокорундовые ГОСТ 23037 -78* А12 О3 св. 72-90, Fe2 O3 - не более 1,5 1500 1800 То же Ортофосфорная кислота 70 %-й концентрации
20 Корундовые ГОСТ 23037 -78*, ТУ 14-8-384-81 А12 O3 - не менее 90 Fe2 O3 -не более 1 1700 1800 Высокоглиноземистый цемент Ортофосфорная кислота 70 %-й концентрации
21 Магнезитовые ГОСТ 23037 -78* MgO - не менее 80, СаО -не более 4 1400 Жидкое стекло с отвердителями
22 Из боя шамотных легковесных изделий ГОСТ 23037 - 78* - 1300 Ортофосфорная кислота 50 %-й концентрации
23 Вспученный перлит (средняя плотность не менее 350 кг/м3 ) ГОСТ 10832-83* - 600 800 1100 Портландцемент Жидкое стекло с отвердителями Глиноземистый цемент, Высокоглиноземистый цемент
24 Вспученный вер- микулит (содержание недовспученных зерен вермикулита определяют по прил. 6) http://www.complexdoc.ru/ntd/487211ГОСТ 12865-67 - 800 1000 1100 Жидкое стекло с кремнефтористым натрием Портландцемент Глиноземистый цемент
25 Керамзит (качество заполнителя для жаростойкого бетона определяют прил. 7) ГОСТ 9759-83 Свободных СаО и MgO -в сумме не более 2, карбонатов - не более 2 800 1000 1100 Жидкое стекло с кремнефтористым натрием Жидкое стекло с нефелиновым шламом или саморассыпающимися шлаками Портландцемент Глиноземистый цемент
26 Асбестовые - SiO2 - не менее 38, MgO - не менее 42, СаО - не более 1,4, Fe2 O3 - не более 4,5 1000 1100 Портландцемент
27 Из отходов обогащения асбеста ТУ 21 РСФСР-1.297-84 SiO2 - 40 - 45, MgO-23-37, СаО - 1 - 9 1200 Портландцемент, жидкое стекло с саморассыпающимися шлаками
28 Диабазовый, базальтовый - SiO2 -40 -52 700 Портландцемент, шлакопортландцемент, жидкое стекло с отвердителями
29 Диоритовый, андезитовый - SiO2 - 52 - 65 700 То же

Жаростойкий бетон | Новости в строительстве

Жаростойкий бетон предназначается для промышленных агрегатов ( футеровка печей, облицовка котлов и т. п.) и строительных конструкций, подверженных нагреванию ( например для дымовых труб).В зависимости от применяемого вяжущего жаростойкие бетоны бывают следующих видов: бетоны на портландцементе, шлакопортландцемента, на глиноземистом цементе и жаростойкие бетоны на жидком стекле. Для повышения стойкости бетона при нагревании в его состав вводят тонкомолотые добавки из хромитовой руды, шамотного боя, магнезитового кирпича, андезита, гранулированного доменного шлака и др.

Тонкость помола добавки для бетона на портландцементе должна быть такой, чтобы через сито № 009 проходило не менее 70%, а для бетона на жидком стекле — не менее 50%, В качестве мелкого и крупного заполнителя применяют хромит, шамот, бой глиняного кирпича, базальт, диабаз, андезит и др. При правильно выбранных вяжущих и заполнителях бетон может длительное время выдерживать, не разрушаясь, действие температуры до 1200°С.

Выбор материалов производят в зависимости от условий и температуры его эксплуатации. Жаростойкие бетоны на портландцементе и глиноземистом цементе производят класса (марки) не менее В20 (250), а на жидком стекле — В12,5 (150). Бетоны на жидком стекле не применяют в условиях частого воздействия воды, а на портландцементе — в условиях кислой агрессивной среды.

При приготовлении бетонных смесей на портландцементе или глиноземистом цементе соблюдается такая последовательность:в смеситель заливают заданное количество воды, при включенном перемешивании загружают другие компоненты и перемешивают 2…3 мин. При изготовлении газобетона, в котором заполнители отсутствуют, после перемешивания загружают водно-алюминиевую суспензию и перемешивают дополнительно 1…2 мин.

Приготовление бетонных смесей на силикат-глыбепроизводят в шламбассейне, куда загружают дозированные по массе силикат глыбу, тонкомолотую добавку, едкий натр и воду. Полученный шлам перекачивают в ванну, подогревают до 30…35°С и подают в с меситель, в который при включенном перемешивающем механизме вводят дозированные по массе заполнитель, водо-алюминиевую суспензию и нефелиновый шлам. Смесь перемешивают 2…3 мин. Для формования изделий из ячеистого бетона применяют металлические формы. В форме смесь выдерживают 2…3 ч.

Твердение изделий на глиноземистом цементе происходит в течение 1 сут при температуре 18…20°С и влажности 90…100%,

на портландцементе твердение изделий проходит при температуре 80…90°С и влажности 90… 100%, а изделия на силикатглыбе твердеют в автоклаве. При приготовлении жаростойких бетонов стремятся ограничить количество воды и жидкого стекла. Осадка конуса должна быть не более 2 см, а жесткость — не менее 10 с.

Бетоны на портландцементе разных составов используются при одностороннем нагреве с предельной температурой 1700°С, на глиноземистом цементе и на жидком стекле — до 1400°С.

 

♦При действии высокой температуры на цементный камень происходит обезвоживание кристаллогидратов и разложение гидрата окиси кальция с образованием СаО. Окись кальция при воздействии влаги гидратируется с увеличением объема и вызывает растрескивание бетона. Поэтому в жаростойкий бетон на портландцементе вводят тонко измельченные материалы, содержащие активный кремнезем SiO2, который реагирует с СаО при температуре 700 — 900°С и в результате химических реакций, протекающих в твердом состоянии, связывает окись кальция.

Цементы

Жаростойкий бетон изготовляют на портландцементе с активной минеральной добавкой (пемзы, золы, доменного гранулированного шлака, шамота). Шлакопортландцемент уже содержит добавку доменного гранулированного шлака и может успешно применяться при температурах до 700°С. Портландцемент и шлакопортландцемент нельзя применять для жаростойкого бетона, подвергающегося кислой коррозии (например, действию сернистого ангидрида в дымовых трубах). В этом случае следует применить бетон на жидком стекле. Он хорошо противостоит кислотной коррозии и сохраняет свою прочность при нагреве до 1000°С.

Глиноземистый цемент можно применять без тонкомолотой добавки, поскольку при его твердении не образуется гидрат окиси кальция. Еще большей огнеупорностью (не ниже 1580°С) обладает высокоглиноземистый цемент с содержанием глинозема 65 — 80%; в сочетании с высокоогнеупорным заполнителем его применяют при температурах до 1700°С.

Столь же высокой огнеупорности позволяют достигнуть фосфатные и алюмофосфатные связующие: фосфорная кислота (Н3РО4), алюмофосфаты Аl(Н2P04)з и магнийфосфаты Mg(h3P04)2. Жаростойкие бетоны на фосфатных связующих можно применять при температурах до 1700°С, они имеют небольшую огневую усадку, термически стойки, хорошо сопротивляются истиранию.

Заполнитель

Заполнитель для жаростойкого бетона должен быть не только стойким при высоких температурах, но и обладать равномерным температурным расширением. Бескварцевые изверженные горные породы как плотные (сиенит, диорит, диабаз, габбро), так и пористые (пемза, вулканические туфы, пеплы) можно использовать для жаростойкого бетона, применяемого при температурах до 700°С.

Для бетона, работающего при температурах 700 — 900°С, целесообразно применять бой обычного глиняного кирпича и доменные отвальные шлаки с модулем основности не более 1, не подверженные распаду. При более высоких температурах заполнителем служат огнеупорные материалы: кусковой шамот, хромитовая руда, бой шамотных, хроммагнезитовых и других огнеупорных изделий.Легкий жаростойкий бетон

Легкий жаростойкий бетон на пористом заполнителе имеет объемную массу менее 2100 кг/м3, его теплопроводность в 1,5 — 2 раза меньше, чем у тяжелого бетона. Применяют пористые заполнители, выдерживающие действие высоких температур (700 — 1000°С): керамзит, вспученный перлит, вермикулит, вулканический туф.

Ячеистый жаростойкий бетон отличается небольшой массой (500 — 1200 кг/м3) и малой теплопроводностью.

Сборные элементы и монолитные конструкции из жаростойкого бетона широко применяют в различных отраслях промышленности: энергетической, черной и цветной металлургии, в химической и нефтеперерабатывающей, в производстве строительных материалов. Жаростойкие ячеистые  бетоны  используют взамен полукислых и шамотных изделий, предназначенных для температур 800 — 1400°С, а также вместо высокоогнеупорных изделий при температуре выше 1400°С.

Замена только 150 тыс. м³ огнеупорной кладки жаростойким бетоном и железобетоном дает значительную экономию .

Большие работы по жаростойким бетонам проводятся под руководством Ю. П. Горлова, К. Д. Некрасова и др.

В МИСИ им. В.В. Куйбышева разработаны алюмосиликатные вяжущие цеолитовой структуры путем гидротермального омоноличивания кислых вулканических стекол: перлитов, обсидианов, липаритов, литоидной пемзы и других видов материалов а также жароупорные бетоны на их основе. Природные высококремнеземистые стекла по своему химическому составу (смотри таблицу №1) можно отнести к алюмосиликатным системам.

Читать далее на http://stroivagon.ru  жаростойкий шлакощелочной бетон

Таблица №1. Химический состав перлитов, %.

Химический состав перлитов, %.При дисперсности S уд=450 м² /кг перлитовые породы проявляют химическую активность вяжущего компонента. Такие виды вяжущих возможно легировать путем добавления в них  микро наполнителей, такие как корунд, тонкомолотый шамот, технический глинозем и другие виды. Это позволяет в широких пределах изменить химический и фазовый состав вяжущего, в частности соотношение основных оксидов SiO2  и Al2O3 а также соответственно термические свойства изделий.

Алюмосиликатные вяжущие обладают рядом существенных достоинств, обуславливающих техническую и экономическую целесообразность их применения при изготовлении жаростойких бетонов. Такие как:

1. Повышение прочности бетонов после нагрева на рабочую температуру.

2. Высокая реакционная способность при нагреве, позволяющая за счет использования специальных добавок управлять структурой синтезируемого вяжущего.

3. Возможность регулирования огнеупорности и термомеханических характеристик вяжущего изменения содержания щелочного и кремнеземистого компонентов.

На основе вяжущего (алюмосиликатное вяжущее,  силикатно-натриевом композиционном вяжущем) и использования различных видов огнеупорных заполнителей получены огнеупорные и жаростойкие бетоны с температурой использования до 1550 °С. Для приготовления жаростойкого бетона используют шамот, перлит, керамзит и другие виды (шамотный перлитобетон, легкий шамотный керамзито-перлитобетон, ячеистые виды бетонов, цирконовые, корундовые и другие виды бетонов).

Такие виды жаростойких бетонов характеризуются несложностью технологии изготовления, низкой себестоимостью и энергоемкостью производства а также высокими термомеханическими эксплуатационными показателями. Достоинства таких видов бетонов являются:

1. Возможность форсированного первого разогрева на рабочую температуру со скоростью до 500 °С в час.

2. Отказ от предварительной сушки перед началом монтажа. Отказ обуславливается низкой влажностью изделий после автоклавной обработки.

3. Отсутствие снижения прочности для большинства изделий в интервале температур  600…900 °С.

4. Высокая прочность после разогрева на рабочую температуру.

Поэтому при получении алюмосиликатных жаростойких и огнеупорных бетонов применение природных вулканических стекол в качестве компонента вяжущего наиболее предпочтительно. Такие материалы приобретают эксплуатационные свойства в процессе первого разогрева на рабочую температуру когда происходит перерождение вяжущего в керамический черепок.

Жаростойкий шамотный перлитобетон

Получают из гидроалюмосиликатного вяжущего на основе кислых вулканических стекол и шамота ( смотри таблицу №2).Таблица №2. Состав шамотных перлитобетонов, % по массе

Состав шамотных перлитобетонов, % по массеОсновные физико-механические показатели жаростойкого шамотного перлитобетона изготовленного на основе сырьевой шихты оптимального состава при использовании в качестве затворителя 8 % -ного раствора NaOH и раствора силиката натрия Мс=2,8 приведены в таблицу №3.

Таблица № 3. Физико-механические свойства шамотных перлитобетонов.

Физико-механические свойства шамотных перлитобетонов.Из приведенных в таблицу данных следует что жаростойкий шамотный перлитобетон по всем показателям превосходит мелкоштучные керамические изделия (ГОСТ 390-83), которые применяют в качестве футеровки обжиговых вагонеток предприятий строительной керамики.

Мелкозернистый циркониевый перлитобетон

Получают такой бетон на основе циркониевого концентрата, которого используют как заполнитель , а также молотой перлитовой породы в количестве 8 % и обезжелезненного циркона в качестве добавки. В качестве затворителя используют раствор едкого натра  7,5 %-ной концентрации.

Физико-химические показатели жаростойкого цирконового перлитобетона:

Средняя плотность, кг/м³-3450…3500

Прочность при сжатии МПа:

после автоклавной обработки-28…30

после обжига при 1600 °С   -100…105

Пористость кажущаяся ,%   -8…9

Усадка огневая ,%  -0,2

Теплопроводность при средней температуре 800 °С, Вт/(м·°С)  -2,2

Коэффициент линейного термического расширения, 10‾6 · °С-1     -3,8

Температура начала деформации под нагрузкой 0,02 МПа, °С  -1580.

Циркониевый перлитобетон используют при футеровке индукционной печи для спекания металлических порошков вместо высокоглиноземистой керамики. Его применение позволило повысить давление прессования с 7 до 20 МПа и снизить количество брака по основному продукту и повысить  при этом экономический эффект от использования одной печи.

Блоки из жаростойкого циркониевого перлитобетона используют в качестве футеровки тигельных стекловаренных печей периодического действия вместо высокоглиноземистой керамики. использование этого бетона позволяет увеличить срок службы футеровки и улучшает качество выпускаемой продукции за счет повышения температуры варки стекла.

Жаростойкие бетоны на силикатно-натриевом композиционном вяжущем 

Такие жаростойкие виды бетонов получают на основе тонкоизмельченной силикат- глыбы и использования огнеупорных заполнителей. В процессе термообработки при довольно высокой температуре до 200 °С, происходит отверждение. На сегодняшний день успешно используется разработанная  несложная технология производства изделий с низким ( до 3 %) расходом вяжущего.

Вид вяжущего и огнеупорного заполнителя определяет предельно допустимую температуру применения, монтажную прочность , среднюю плотность и прочность при рабочей температуре жаростойкого бетона. От вида заполнителя и вяжущего используемых для изготовления бетона зависит его термическая стойкость а также стойкость во время эксплуатации в различных средах.

На силикатно-натриевом композиционном вяжущем получены жаростойкие бетоны с предельно допустимой температурой применения 900…1600 °С. Полученный бетон согласно ГОСТ 20910-82, относится к 16-му классу. По своим свойствам он не уступает, а по термической стойкости превосходит в 2,5 раза обжиговые высокоглиноземистые изделия.

Основные физико-механические показатели свойств жаростойкого бетона на силикатно-натриевом композиционном вяжущем и муллитокорундовом заполнителе:

Огнеупорность, °С -1800

Максимальная температура применения при одностороннем нагреве, °С -1600

Прочность при сжатии после сушки, не ниже , МПа:

при 200 °С        …..27

при 1500 °С   ….32

Плотность средняя, кг/м³   -2400

Усадка огневая, % -0,5

Пористость общая, % 19,5

Термический коэффициент линейного расширения, 10‾6 · °С-1   -5,6….6,2

Температура деформации под нагрузкой 0,2 МПа,°С:

начало деформации -1530

4 %-ная деформация 1560

разрушение -1600

теплопроводность,ВТ/(м·°С):

при 350 °С-1,14

при 610°С-0,96

при 800 °С-0,89

Просмотров: 371

РЕКОМЕНДУЕМ выполнить перепост статьи в соцсетях!

stroivagon.ru


Смотрите также