Карбонизация бетона. Карбонизация бетона


Карбонизация бетона - это... Что такое Карбонизация бетона?

 Карбонизация бетона

22. Карбонизация бетона

Процесс взаимодействия цементного камня с углекислым газом, приводящий к снижению щелочности жидкой фазы бетона

3.7 карбонизация бетона: Процесс взаимодействия цементного камня с двуокисью углерода, приводящий к изменению структуры самого цементного камня и к снижению щелочности жидкой фазы бетона (уменьшению показателя pH раствора в порах бетона).

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • карбонатный индекс
  • карбонизированный бланк

Смотреть что такое "Карбонизация бетона" в других словарях:

  • Карбонизация бетона — – процесс взаимодействия цементного камня с углекислым газом, приводящий к снижению щелочности жидкой фазы бетона. [СТ СЭВ 4419 83] Карбонизация бетона – процесс взаимодействия цементного камня с углекис­лым газом, снижение щелочности жидкой базы …   Энциклопедия терминов, определений и пояснений строительных материалов

  • карбонизация бетона — Процесс взаимодействия цементного камня с углекислым газом, приводящий к снижению щелочности жидкой фазы бетона. [СТ СЭВ 4419 83] Тематики защита от коррозии в строительстве Обобщающие термины виды коррозии …   Справочник технического переводчика

  • карбонизация бетона — процесс взаимодействия цементного камня с углекислым газом, приводящий к снижению щелочности жидкой фазы бетона. (Смотри: СТ СЭВ 4419 83. Защита от коррозии в строительстве. Конструкции строительные. Термины и определения.) Источник: Дом:… …   Строительный словарь

  • нейтрализация (карбонизация) бетона углекислым газом — 3.9 нейтрализация (карбонизация) бетона углекислым газом: Процесс взаимодействия бетона с углекислым газом, в результате которого происходит образование карбоната кальция со снижением рН жидкой фазы бетона и утратой бетоном пассивирующего… …   Словарь-справочник терминов нормативно-технической документации

  • Нейтрализация (карбонизация) бетона углекислым газом — – процесс взаимодействия бетона с углекислым газом, в результате которого происходит образование карбоната кальция со снижением рН жидкой фазы бетона и утратой бетоном пассивирующего действия на стальную арматуру. [ГОСТ Р 52804 2007]… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Нейтрализация (карбонизация) бетона — углекислым газом: процесс взаимодействия бетона с углекислым газом, в результате которого происходит образование карбоната кальция со снижением pH жидкой фазы бетона и утратой бетоном пассивирующего действия на стальную арматуру... Источник: ГОСТ …   Официальная терминология

  • нейтрализация (карбонизация) бетона углекислым газом — Процесс взаимодействия бетона с углекислым газом, в результате которого происходит образование карбоната кальция со снижением рН жидкой фазы бетона и утратой бетоном пассивирующего действия на стальную арматуру. [ГОСТ Р 52804 2007] Тематики… …   Справочник технического переводчика

  • Карбонизация — – химический процесс взаимодействия гидратных новообразований цементного камня, например Са(ОН)2, с углекислым газом в результате диффузии С02, приводящий к повышению плотности, прочности, а также к снижению pH поровой жидкости и, таким… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Защита бетона — Термины рубрики: Защита бетона Защитные покрытия Кальматрон Нейтрализация (карбонизация) бетона углекислым газом Пропитка бетона …   Энциклопедия терминов, определений и пояснений строительных материалов

  • нейтрализация — 3.26 нейтрализация (neutralisation): Приведение аэрозоля к распределению зарядов Больцмана (число положительно и отрицательно заряженных ионов в аэрозоле одинаково). Источник: ГОСТ Р ЕН 779 2007: Фильтры очистки воздуха общего назначения.… …   Словарь-справочник терминов нормативно-технической документации

normative_reference_dictionary.academic.ru

Карбонизация бетона - это... Что такое Карбонизация бетона?

Карбонизация бетона – процесс взаимодействия цементного камня с углекислым газом, приводящий к снижению щелочности жидкой фазы бетона.

[СТ СЭВ 4419-83]

Карбонизация бетона – процесс взаимодействия цементного камня с углекис­лым газом, снижение щелочности жидкой базы бетона.

[Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ им. А. А. Гвоздева, Москва, 2007 г. 110 стр.]

Рубрика термина: Общие, коррозия

Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника, Автотранспорт, Акустические материалы, Акустические свойства, Арки, Арматура, Арматурное оборудование, Архитектура, Асбест, Аспирация, Асфальт, Балки, Без рубрики, Бетон, Бетонные и железобетонные, Блоки, Блоки оконные и дверные, Бревно, Брус, Ванты, Вентиляция, Весовое оборудование, Виброзащита, Вибротехника, Виды арматуры, Виды бетона, Виды вибрации, Виды испарений, Виды испытаний, Виды камней, Виды кирпича, Виды кладки, Виды контроля, Виды коррозии, Виды нагрузок на материалы, Виды полов, Виды стекла, Виды цемента, Водонапорное оборудование, Водоснабжение, вода, Вяжущие вещества, Герметики, Гидроизоляционное оборудование, Гидроизоляционные материалы, Гипс, Горное оборудование, Горные породы, Горючесть материалов, Гравий, Грузоподъемные механизмы, Грунтовки, ДВП, Деревообрабатывающее оборудование, Деревообработка, ДЕФЕКТЫ, Дефекты керамики, Дефекты краски, Дефекты стекла, Дефекты структуры бетона, Дефекты, деревообработка, Деформации материалов, Добавки, Добавки в бетон, Добавки к цементу, Дозаторы, Древесина, ДСП, ЖД транспорт, Заводы, Заводы, производства, цеха, Замазки, Заполнители для бетона, Защита бетона, Защита древесины, Защита от коррозии, Звукопоглащающий материал, Золы, Известь, Изделия деревянные, Изделия из стекла, Инструменты, Инструменты геодезия, Испытания бетона, Испытательное оборудование, Качество цемента, Качество, контроль, Керамика, Керамика и огнеупоры, Клеи, Клинкер, Колодцы, Колонны, Компрессорное оборудование, Конвеера, Конструкции ЖБИ, Конструкции металлические, Конструкции прочие, Коррозия материалов, Крановое оборудование, Краски, Лаки, Легкие бетоны, Легкие наполнители для бетона, Лестницы, Лотки, Мастики, Мельницы, Минералы, Монтажное оборудование, Мосты, Напыления, Обжиговое оборудование, Обои, Оборудование, Оборудование для производства бетона, Оборудование для производства вяжущие, Оборудование для производства керамики, Оборудование для производства стекла, Оборудование для производства цемента, Общие, Общие термины, Общие термины, бетон, Общие термины, деревообработка, Общие термины, оборудование, Общие, заводы, Общие, заполнители, Общие, качество, Общие, коррозия, Общие, краски, Общие, стекло, Огнезащита материалов, Огнеупоры, Опалубка, Освещение, Отделочные материалы, Отклонения при испытаниях, Отходы, Отходы производства, Панели, Паркет, Перемычки, Песок, Пигменты, Пиломатериал, Питатели, Пластификаторы для бетона, Пластифицирующие добавки, Плиты, Покрытия, Полимерное оборудование, Полимеры, Половое покрытие, Полы, Прессовое оборудование, Приборы, Приспособления, Прогоны, Проектирование, Производства, Противоморозные добавки, Противопожарное оборудование, Прочие, Прочие, бетон, Прочие, замазки, Прочие, краски, Прочие, оборудование, Разновидности древесины, Разрушения материалов, Раствор, Ригеля, Сваи, Сваизабивное оборудование, Сварка, Сварочное оборудование, Свойства, Свойства бетона, Свойства вяжущих веществ, Свойства горной породы, Свойства камней, Свойства материалов, Свойства цемента, Сейсмика, Склады, Скобяные изделия, Смеси сухие, Смолы, Стекло, Строительная химия, Строительные материалы, Суперпластификаторы, Сушильное оборудование, Сушка, Сушка, деревообработка, Сырье, Теория и расчет конструкций, Тепловое оборудование, Тепловые свойства материалов, Теплоизоляционные материалы, Теплоизоляционные свойства материалов, Термовлажносная обработка бетона, Техника безопасности, Технологии, Технологии бетонирования, Технологии керамики, Трубы, Фанера, Фермы, Фибра, Фундаменты, Фурнитура, Цемент, Цеха, Шлаки, Шлифовальное оборудование, Шпаклевки, Шпон, Штукатурное оборудование, Шум, Щебень, Экономика, Эмали, Эмульсии, Энергетическое оборудование

Источник: Энциклопедия терминов, определений и пояснений строительных материалов

Энциклопедия терминов, определений и пояснений строительных материалов. - Калининград. Под редакцией Ложкина В.П.. 2015-2016.

construction_materials.academic.ru

Карбонизация бетона

Влияние карбонизации бетона на долговечность строительных конструкций

теплоты населению и производству в зонах неустойчивого теплоснабжения; высокий рост цен на топливо и снижение вредных выбросов в окружающую среду от работы энергетических установок. В настоящее время потребляется в мире примерно 30 тысяч миллиардов киловатт-часов. Уровень материальной, а в конечном счете и духовной культуры людей находится в прямой зависимости от количества энергии, имеющейся в их распоряжении.

Актуальным становится применение установок на базе солнечных коллекторов с совместной работой тепловых насосов для условий города Владивостока и Приморского края. В этом регионе наблюдается большое количество солнечных дней и использование их, значительно сократит потребление энергоносителей, и выбросов в окружающую среду вредных веществ. В условиях постоянно растущих цен на энергоносители и электроэнергию, экономическая эффективность этих решений должна стать предпосылкой для массового внедрения во все отрасли народного хозяйства установок при совместной работе солнечных коллекторов и теплового насоса.

В строительном институте установлена и введена, частично, в работу научно-исследовательская установка при совместной работе солнечных коллекторов и теплового насоса. Каждый день, в любую погоду, производятся снятия показаний теплоносителя и температуры в баке аккумуляторе независимо от погоды.

Для научно-исследовательской установки было выделено помещение в подвале Строительного института ДВГТУ, для расположения всего оборудования кроме солнечных коллекторов. На крыше ночного клуба В8В были установлены на специальном металлическом каркасе солнечные коллектора, направленные на южную сторону. Всего четыре солнечных коллектора с максимальной мощностью каждого 2,5 кВт.

Научно-исследовательская установка была достаточно проработана и на её основе можно проводить исследования как работы одельно тепловых насосов, так и солнечных коллекторов, а также их совместную работу, изучать как качественные так и количественные характеристики.

В Приморском крае постепенно проектируют и вводят в эксплуатацию такие установоки, но пока для небольших объектов - это дома коттеджного типа. Основной задачей для правильной и эффективной работы солнечных коллекторов является грамотный расчёт и монтаж. На данный момент все установки таких типов работают и каких-то неполадок пока не наблюдалось, но также надо учитывать то, что прошло ещё мало времени, чтобы делать более точную оценку работы установок. Хотя на западе данные виды установок себя показали с наилучшей стороны.

В.И. Лесная, В.Т. Гуляев

ВЛИЯНИЕ КАРБОНИЗАЦИИ БЕТОНА НА ДОЛГОВЕЧНОСТЬ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ

Все железобетонные конструкции, эксплуатирующиеся в воздушной среде, подвержены влиянию кислых газов. Поскольку концентрация углекислого газа в воздухе в 10 - Ю4 раз выше концентрации других кислых газов, основным процессом нейтрализации бетона является карбонизация. Количество углекислого г аза в атмосфере сельской местности составляет обычно 0,03% по объему или 600 мг/мЗ, в атмосфере городов и промышленных районов его концентрация может быть значительно более высокой и достигать 0,3% или 6000 мг/мЗ, а в воздухе цехов - до 1%. Будучи пористым, бетон хорошо поглощает углекислый газ, кислород и влагу, присутствующие в атмосфере. Способность бетона поглощать оказывает пагубное воздействие на арматуру, которая при повреждении бетона попадает в кислотную среду и начинает корродировать. Ржавчина, формирующаяся при окислении арматуры, увеличивает ее объем, повышает внутреннее напряжение и приводит к разломам бетона и оголению корродирующей арматуры. Оголенная арматура разрушается еще стремительнее, что приводит к быстрому изнашиванию железобетонной конструкции.

Углекислый газ С02, имеющийся в атмосфере, в присутствии влаги вступает во взаимодействие как с продуктами гидратации клинкерных минералов, так и с минералами цементного камня. Эго*взаимодействие происходит даже при малых концентрациях СО2 в атмосфере,

где парциальное давление С02 около Зх10~5МПа, в непроветриваемом помещении парциальное давление может составлять до 12х10°МПа.

В присутствии С02 карбонизуется Са(ОН)2 (гидрооксид кальция) бетона до СаСОз (карбонат кальция), в такие же реакции вступают и некоторые другие продукты гидратации цемента. Эти реакции могут протекать при низких концентрациях С02 в атмосфере, однако глубина карбонизации незначительна и медленно увеличивается во времени. Степень карбонизации увеличивается с увеличением концентрации С02 в воздухе. Карбонизация бетона и цементного камня зависит от множества внешних и внутренних факторов: относительная влажность атмосферного воздуха, проницаемость и пористость материала, температура, давление, условия гидратации и влажность цементного камня.

Взаимодействие гидрооксида кальция с углекислым газом описывается следующей реакцией: Са(ОН)2 + С02 = СаСОз + Н20

Гидратные новообразования цементного камня также могут подвергаться карбонизации, причем конечными продуктами реакции является целый спектр различных веществ: карбонат кальция, гидратированный кремнезем, глинозем, оксид железа. Полная реакция карбонизации ! С3$2Н3(тоберморита) выглядит следующим образом:

( ЗСаО- 2ВЮ2- ЗН20 + ЗС02-ЗСаС03+28Ю2+ЗН20

! Следует отметить, что карбонизация бетона положительно влияет на его прочность, так как

растворимость СаС03 почти в 100 раз ниже, чем Са(ОН)2. Процесс выщелачивания в таком бетоне протекает значительно медленнее. Карбонат кальция плохо растворяется в воде и, образуясь, стремится герметически закрыть поры на поверхности бетона. Карбонизация играет положительную роль, пока не дошла до глубоких слоев бетона, контактирующих с поверхностью стальной арматуры. Отрицательные последствия глубоко проникшей карбонизации связаны с понижением его щелочности и потерей бетоном химических свойств, предотвращающих коррозию стальной арматуры.

Известь, образующаяся при гидратации цемента, создает в бетоне щелочную среду с высоким показателем РЬ (водородный показатель поровой влаги цементного камня) =12-14. Обычно значение поровой воды в бетоне находится в пределах от 10,5 до 11,5. Известь нейтрализуется путем образования карбоната кальция, который снижает показатель РЬ с 12,6 до 10 (для углекислого кальция) и падает ниже 10 для смеси углекислого кальция с бикарбонатом кальция Са(НС03). Многие исследователи условно считают, что как только РЬ бетона падает ниже 10, он теряет способность надежно защищать арматуру от коррозии, минимальным критическим значением РЬ для бетона считают величину 11,8. I Значения толщины слоя бетона, в которой он потерял защитные свойства по отношению к

1 арматуре, определяют индикаторным тестом и физико-химическим методом (методами РЬ и карбометрии). Так как показатель РЬ является основной количественной характеристикой перерождения цементного камня в карбонаты под воздействием внешней среды, он является универсальной характеристикой состояния бетона и его защитных свойств по отношению к арматуре. Используя 1% раствор фенолфталеина, растворенного в этане (основной кислотный индикатор), можно обнаружить глубину карбонизации, наблюдая за изменениями цвета от бесцветного до фиолетового. Это происходит из-за изменений содержания кислоты от 8,5 - 9 (карбонизация бетона) до более низкой величины РЬ. О карбонизации бетона при действии фенолфталеина свидетельствует появление розового цвета, тогда как бетон не подвергшийся карбонизации, сохраняет свою первоначальную окраску.

Исследования железобетонных конструкций показывают, что карбонизация бетона продолжается во все время их эксплуатации, однако процесс карбонизации не распространяется на значительную глубину. Исключение составляют конструкции, в которых был применен бетон не обладающей нужной плотностью, или когда концентрация С02 в сотни раз превышала его содержание в атмосферном воздухе.

Результаты натурных обследований эксплуатируемых объектов свидетельствуют о значительном увеличении в последние годы числа аварийных ситуаций вследствие карбонизации бетона и необходимости проведения масштабных работ по ремонту конструкций. В целом это 'обусловлено приближением сроков эксплуатации зданий и сооружений к нормативным значениям для большей части объектов, построенных в 50-60-е годы — периода начала массового применения железобетона в России. Однако, имеются также многочисленные случаи раннего (через 10... 15 лет)

повреждения железобетона как из-за нарушения технологий изготовления конструкций, так и недооценки агрессивности среды.

В современных условиях возросла доля реконструируемых объектов, в которых новые условия эксплуатации могут существенно отличаться от параметров первоначального проекта, что также влияет на долговечность железобетона.

Необходимое условие обеспечения качества бетона - это контроль качества составляющих бетон ингредиентов и соблюдение рецептуры и технологии при приготовлении бетона. К сожалению, эти требования выполняются не всегда, и строители получают некачественный бетон, быстро разрушающийся под действием нагрузок и атмосферных воздействий.

Анализ повреждения железобетонных конструкций включает определение глубины карбонизации, степень воздействия среды, толщину стальной арматуры, обнаружение внутренних трещин и воздушных карманов. Цели восстановления конструкции можно сформулировать следующим образом: препятствовать разрастанию коррозии, восстановить химически пассивную среду для арматуры, устранить полости и пористость поверхности, препятствовать проникновению воды в бетон, создать антикарбонизационный барьер и. в конечном счете, восстановить нормальный внешний вид поверхности.

Для достижения этих целей рекомендуются следующая последовательность выполнения ремонтных работ:

- удалить старую штукатурку, следы масел, грязь и пыль до бетонной поверхности;

- если присутствует арматура, то ее следует зачистить до блеска металла, удаляя все следы ржавчины;

- сразу же после очистки арматуру следует защитить от дальнейшего окисления, покрывая ее в два слоя с помощью кисти жидким раствором, который состоит из 1 части СТРАТО 4900 и 1 части цемента;

- восстановление бетона производиться с помощью РЕЗИСТО ТИКСО - безусадочного модифицированного цементного состава, отличающегося высокой тиксотропностью (наносится слоем до 4 см за один проход по вертикали без опалубки) и армированного синтетическим волокном. Перед нанесением поверхность рекомендуется увлажнить до насыщения;

- при необходимости сформировать толстые слои бетона установить опалубку и использовать безусадочный сверхтекучий состав, армированный синтетическим волокном, РЕЗИСТО ФЛЮИД;

- отремонтированные поверхности следует выровнять, используя двухкомпонентный состав РЕЗИСЮ БИФИНИШИНГ, который содержит отборные инертные и гидравлические связующие компоненты и добавки с синтетическими полимерами, растворимыми в воде. Это гарантирует превосходную адгезию к поверхности, непроницаемость к воде и агрессивным газам атмосферы;

- сооружение должно быть защищено от карбонизации специальной защищающей и декоративной краской, содержащей акриловые смолы на основе растворителя - ИНДЕКОЛОР. Она непроницаема к воде и к двуокиси углерода, но позволяет воде испаряться.

Н.Н.Михайлова, В.А.Антропова, Е.П. Холошин

НОРМАТИВНО-ТЕХНИЧЕСКАЯ БАЗА В СТРОИТЕЛЬСТВЕ.

СЕРТИФИКАЦИЯ В СТРОИТЕЛЬНОЙ ИНДУСТРИИ.

Нормативно-техническая база в строительстве создавалась годами на основании анализа и обобщения теоретических и практических знаний в области строительства. Эта база разрабатывалась усилиями множества разнопрофильных научно-исследовательских коллективов под руководством заслуженных деятелей науки и техники. Основная задача - обеспечение должной несущей способности и безопасности зданий и сооружений.

Существующая нормативная база в целом удовлетворяет потребности строительной практики, несмотря на то, что многие СНиПы и стандарты не обновлялись уже много лет и даже десятков лет.

cyberleninka.ru

Что называют карбонизацией бетона?

Самой частой причиной разрушения бетона является карбонизация.

Будучи пористым, бетон хорошо впитывает углекислый газ, кислород и влагу, присутствующие в атмосфере. Способность бетона впитывать не влияет на прочность самой бетонной структуры, но оказывает пагубное воздействие на арматуру, которая при повреждении бетона попадает в кислотную среду и начинает корродировать.

Известь, образующаяся при гидратации цемента, создает в бетоне щелочную среду, с высоким показателем pH (около 12). Стальная арматура выпускается химически пассивной и защищенной от щелочей нереактивной пленкой (пассивационным слоем) оксидированного железа, что в некоторой степени защищает арматуру от окисления.

В пассивационный слой, покрывающий стальную арматуру в бетоне, проникает углекислый газ. Известь нейтрализуется путем образования карбоната кальция (который снижает показатель pH), что приводит к коррозии стальной арматуры.

Ржавчина, формирующаяся при окислении арматуры, увеличивает ее объем, повышает внутреннее напряжение и приводит к разломам бетона и оголению корродирующей арматуры. Оголенная арматура разрушается еще стремительнее, что приводит к быстрому изнашиванию железобетонной конструкции.

Для антикоррозионной защиты строительной арматуры Компания КрасКо рекомендует:

Армасил — защита арматурной стали, бескислотный преобразователь ржавчины.

Защита от коррозии бетона — на сайте krasko.ru.

Вернуться к списку вопросов

Версия для печати

www.krasko.ru

Карбонизация бетона

. контакты 8 929 943 69 68 http://vk.com/club23595476 .

ИССЛЕДОВАНИЕ КИНЕТИКИ КАРБОНИЗАЦИИ БЕТОНА

Общие сведения о карбонизации бетона

Растворимость СаСО3 в 100 раз ниже, чем Са(ОН)2, поэтому карбонизация повышает стойкость бетона в мягких водах. Карбони­зационный слой цементного камня мало растворяется и значитель­но замедляет диффузию гидроксида кальция в окружающую среду (карбонизация приводит к повышении плотности по­верхностного слоя, однако не предотвращает его растворения полностью).

Глубина карбонизации цементного камня на воздухе при нор­мальном давлении СО2 невелика. Карбонизация свободной, а также частично связанной извести, находящейся на поверхности цемент­ного камня, в первые моменты времени идет быстро. Однако по мере углубления этот процесс замедляется. Глубина карбонизации повышается с увеличением длительности выдерживания цементного камня и бетона в естественных условиях и при пониженной плотности бетона. Искусственная карбонизация

поверхностного слоя при повышенной концентрации СО2 протекает гораздо интенсивнее.

Плотность бетона является важным фактором карбонизации, так время проникания угле­кислого газа в тело камня  с увеличением плотности может  увеличиться до 25 раз. Карбонизация происходит очень быстро при относительной влажности воздуха 50…70 % и гораздо медленнее, если относи­тельная влажность воздуха более 75 % или менее 45 %. При повышении влажности поры заполняются водой и СО2 должен сначала раство­риться и распространиться в воде, чтобы проникнуть в бетон. При пониженной влажности внутренняя жидкость не обладает свойствами, позволяющими ей хорошо растворять Са(ОН)2 и СО2.

Скорость карбонизации бетона зависит также от концентрации углекислого газа, вида цемента его дисперсности и В/Ц.

Одно из уравнений, отражающее кинетику карбонизации

X = a ?2 + b,

где X – глубина карбонизации, см; ? – время карбонизация, годы; a и b – числовые коэффициенты, зависящие от многих факторов, в т. ч. От В/Ц; количества и вида добавки; вида и количества цемента и других факторов.

Глубина карбонизации хорошо сохраненного бетона высокой плотности определяется температурой и.водоцементным отношением по почти линейной зависимости Карбонизация, повышая стойкость бетона к коррозии I вида, снижает долговечность железобетонных конструкций в надводных частях сооружений за счет потери бетоном защитных функций по отношению к стальной арматуре.

При ограниченном содержании в клинкере C3S стойкость це­ментного камня к выщелачиванию повышается, особенно значитель­но у цементного камня из белитовых клинкеров, что свидетельст­вует о важности связывания свободного гидроксида кальция для повышения стойкости цементного камня к выщелачиванию.

Стойкость портландцемента к. коррозии I вида повышается с помощью активным минеральных добавок, способных связывать Са(ОН)2 в ме­нее растворимые соединения.

По данным В.В. Кинда, в цементном камне через 28 суток водного твердения находится следующее количество Са(ОН)2, %:

– на портландцементе без добавок – 9,37;

– на портландцементе с добавкой 30 % трепела – 2,92;

– на портландцементе с добавкой 40 % трепела – 1,50;

– на портландцементе с добавкой 50 % трепела – 0,85.

При введении АМД образовавшиеся в результате реакции пуццоланизации низкоосн?вные гидросиликаты кальция склонны к значительному набуханию, что ведет к повышению плотности бетона. Можно рассчитать необходимое количество добавки для связывания всего выделившегося Са(ОН)2.

Исследования коррозионной стойкости бетонов на глинозе­мистом цементе показали, что она значительно выше, чем у порт­ландцемента. Это связано с тем, что образующийся при гидрата­ции глиноземистого цемента гидрат глинозема заполняет поры це­ментного камня и уплотняет его. Плотность цементного камня на глиноземистом цементе значительно выше, чем на портландцемен­те, следовательно, выше и сравнительная стойкость бетонов на глиноземистом цементе.

http://vk.com/club23595476 . контакты http://vk.com/club23595476 .

xn--90afcnmwva.xn--p1ai

карбонизация бетона - это... Что такое карбонизация бетона?

  • Карбонизация бетона — – процесс взаимодействия цементного камня с углекислым газом, приводящий к снижению щелочности жидкой фазы бетона. [СТ СЭВ 4419 83] Карбонизация бетона – процесс взаимодействия цементного камня с углекис­лым газом, снижение щелочности жидкой базы …   Энциклопедия терминов, определений и пояснений строительных материалов

  • карбонизация бетона — Процесс взаимодействия цементного камня с углекислым газом, приводящий к снижению щелочности жидкой фазы бетона. [СТ СЭВ 4419 83] Тематики защита от коррозии в строительстве Обобщающие термины виды коррозии …   Справочник технического переводчика

  • Карбонизация бетона — 22. Карбонизация бетона Процесс взаимодействия цементного камня с углекислым газом, приводящий к снижению щелочности жидкой фазы бетона Источник: СТ СЭВ 4419 83: Защита от коррозии в строительстве. Конструкции строительные. Термины и определения …   Словарь-справочник терминов нормативно-технической документации

  • нейтрализация (карбонизация) бетона углекислым газом — 3.9 нейтрализация (карбонизация) бетона углекислым газом: Процесс взаимодействия бетона с углекислым газом, в результате которого происходит образование карбоната кальция со снижением рН жидкой фазы бетона и утратой бетоном пассивирующего… …   Словарь-справочник терминов нормативно-технической документации

  • Нейтрализация (карбонизация) бетона углекислым газом — – процесс взаимодействия бетона с углекислым газом, в результате которого происходит образование карбоната кальция со снижением рН жидкой фазы бетона и утратой бетоном пассивирующего действия на стальную арматуру. [ГОСТ Р 52804 2007]… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Нейтрализация (карбонизация) бетона — углекислым газом: процесс взаимодействия бетона с углекислым газом, в результате которого происходит образование карбоната кальция со снижением pH жидкой фазы бетона и утратой бетоном пассивирующего действия на стальную арматуру... Источник: ГОСТ …   Официальная терминология

  • нейтрализация (карбонизация) бетона углекислым газом — Процесс взаимодействия бетона с углекислым газом, в результате которого происходит образование карбоната кальция со снижением рН жидкой фазы бетона и утратой бетоном пассивирующего действия на стальную арматуру. [ГОСТ Р 52804 2007] Тематики… …   Справочник технического переводчика

  • Карбонизация — – химический процесс взаимодействия гидратных новообразований цементного камня, например Са(ОН)2, с углекислым газом в результате диффузии С02, приводящий к повышению плотности, прочности, а также к снижению pH поровой жидкости и, таким… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Защита бетона — Термины рубрики: Защита бетона Защитные покрытия Кальматрон Нейтрализация (карбонизация) бетона углекислым газом Пропитка бетона …   Энциклопедия терминов, определений и пояснений строительных материалов

  • нейтрализация — 3.26 нейтрализация (neutralisation): Приведение аэрозоля к распределению зарядов Больцмана (число положительно и отрицательно заряженных ионов в аэрозоле одинаково). Источник: ГОСТ Р ЕН 779 2007: Фильтры очистки воздуха общего назначения.… …   Словарь-справочник терминов нормативно-технической документации

dic.academic.ru

vest-beton.ru

карбонизация бетона - это... Что такое карбонизация бетона?

 карбонизация бетона Источник: "Дом: Строительная терминология", М.: Бук-пресс, 2006.

Строительный словарь.

  • капитальный ремонт здания
  • кармашек

Смотреть что такое "карбонизация бетона" в других словарях:

  • Карбонизация бетона — – процесс взаимодействия цементного камня с углекислым газом, приводящий к снижению щелочности жидкой фазы бетона. [СТ СЭВ 4419 83] Карбонизация бетона – процесс взаимодействия цементного камня с углекис­лым газом, снижение щелочности жидкой базы …   Энциклопедия терминов, определений и пояснений строительных материалов

  • карбонизация бетона — Процесс взаимодействия цементного камня с углекислым газом, приводящий к снижению щелочности жидкой фазы бетона. [СТ СЭВ 4419 83] Тематики защита от коррозии в строительстве Обобщающие термины виды коррозии …   Справочник технического переводчика

  • Карбонизация бетона — 22. Карбонизация бетона Процесс взаимодействия цементного камня с углекислым газом, приводящий к снижению щелочности жидкой фазы бетона Источник: СТ СЭВ 4419 83: Защита от коррозии в строительстве. Конструкции строительные. Термины и определения …   Словарь-справочник терминов нормативно-технической документации

  • нейтрализация (карбонизация) бетона углекислым газом — 3.9 нейтрализация (карбонизация) бетона углекислым газом: Процесс взаимодействия бетона с углекислым газом, в результате которого происходит образование карбоната кальция со снижением рН жидкой фазы бетона и утратой бетоном пассивирующего… …   Словарь-справочник терминов нормативно-технической документации

  • Нейтрализация (карбонизация) бетона углекислым газом — – процесс взаимодействия бетона с углекислым газом, в результате которого происходит образование карбоната кальция со снижением рН жидкой фазы бетона и утратой бетоном пассивирующего действия на стальную арматуру. [ГОСТ Р 52804 2007]… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Нейтрализация (карбонизация) бетона — углекислым газом: процесс взаимодействия бетона с углекислым газом, в результате которого происходит образование карбоната кальция со снижением pH жидкой фазы бетона и утратой бетоном пассивирующего действия на стальную арматуру... Источник: ГОСТ …   Официальная терминология

  • нейтрализация (карбонизация) бетона углекислым газом — Процесс взаимодействия бетона с углекислым газом, в результате которого происходит образование карбоната кальция со снижением рН жидкой фазы бетона и утратой бетоном пассивирующего действия на стальную арматуру. [ГОСТ Р 52804 2007] Тематики… …   Справочник технического переводчика

  • Карбонизация — – химический процесс взаимодействия гидратных новообразований цементного камня, например Са(ОН)2, с углекислым газом в результате диффузии С02, приводящий к повышению плотности, прочности, а также к снижению pH поровой жидкости и, таким… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Защита бетона — Термины рубрики: Защита бетона Защитные покрытия Кальматрон Нейтрализация (карбонизация) бетона углекислым газом Пропитка бетона …   Энциклопедия терминов, определений и пояснений строительных материалов

  • нейтрализация — 3.26 нейтрализация (neutralisation): Приведение аэрозоля к распределению зарядов Больцмана (число положительно и отрицательно заряженных ионов в аэрозоле одинаково). Источник: ГОСТ Р ЕН 779 2007: Фильтры очистки воздуха общего назначения.… …   Словарь-справочник терминов нормативно-технической документации

dic.academic.ru

карбонизация бетона - это... Что такое карбонизация бетона?

 карбонизация бетона

 

карбонизация бетонаПроцесс взаимодействия цементного камня с углекислым газом, приводящий к снижению щелочности жидкой фазы бетона.[СТ СЭВ 4419-83]

Тематики

  • защита от коррозии в строительстве

Обобщающие термины

  • виды коррозии

Справочник технического переводчика. – Интент. 2009-2013.

  • карбонизация
  • карбонизация зеленого щелока

Смотреть что такое "карбонизация бетона" в других словарях:

  • Карбонизация бетона — – процесс взаимодействия цементного камня с углекислым газом, приводящий к снижению щелочности жидкой фазы бетона. [СТ СЭВ 4419 83] Карбонизация бетона – процесс взаимодействия цементного камня с углекис­лым газом, снижение щелочности жидкой базы …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Карбонизация бетона — 22. Карбонизация бетона Процесс взаимодействия цементного камня с углекислым газом, приводящий к снижению щелочности жидкой фазы бетона Источник: СТ СЭВ 4419 83: Защита от коррозии в строительстве. Конструкции строительные. Термины и определения …   Словарь-справочник терминов нормативно-технической документации

  • карбонизация бетона — процесс взаимодействия цементного камня с углекислым газом, приводящий к снижению щелочности жидкой фазы бетона. (Смотри: СТ СЭВ 4419 83. Защита от коррозии в строительстве. Конструкции строительные. Термины и определения.) Источник: Дом:… …   Строительный словарь

  • нейтрализация (карбонизация) бетона углекислым газом — 3.9 нейтрализация (карбонизация) бетона углекислым газом: Процесс взаимодействия бетона с углекислым газом, в результате которого происходит образование карбоната кальция со снижением рН жидкой фазы бетона и утратой бетоном пассивирующего… …   Словарь-справочник терминов нормативно-технической документации

  • Нейтрализация (карбонизация) бетона углекислым газом — – процесс взаимодействия бетона с углекислым газом, в результате которого происходит образование карбоната кальция со снижением рН жидкой фазы бетона и утратой бетоном пассивирующего действия на стальную арматуру. [ГОСТ Р 52804 2007]… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Нейтрализация (карбонизация) бетона — углекислым газом: процесс взаимодействия бетона с углекислым газом, в результате которого происходит образование карбоната кальция со снижением pH жидкой фазы бетона и утратой бетоном пассивирующего действия на стальную арматуру... Источник: ГОСТ …   Официальная терминология

  • нейтрализация (карбонизация) бетона углекислым газом — Процесс взаимодействия бетона с углекислым газом, в результате которого происходит образование карбоната кальция со снижением рН жидкой фазы бетона и утратой бетоном пассивирующего действия на стальную арматуру. [ГОСТ Р 52804 2007] Тематики… …   Справочник технического переводчика

  • Карбонизация — – химический процесс взаимодействия гидратных новообразований цементного камня, например Са(ОН)2, с углекислым газом в результате диффузии С02, приводящий к повышению плотности, прочности, а также к снижению pH поровой жидкости и, таким… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Защита бетона — Термины рубрики: Защита бетона Защитные покрытия Кальматрон Нейтрализация (карбонизация) бетона углекислым газом Пропитка бетона …   Энциклопедия терминов, определений и пояснений строительных материалов

  • нейтрализация — 3.26 нейтрализация (neutralisation): Приведение аэрозоля к распределению зарядов Больцмана (число положительно и отрицательно заряженных ионов в аэрозоле одинаково). Источник: ГОСТ Р ЕН 779 2007: Фильтры очистки воздуха общего назначения.… …   Словарь-справочник терминов нормативно-технической документации

technical_translator_dictionary.academic.ru

Карбонизация бетона | Суровые будни начальника лаборатории

. контакты 8 929 943 69 68 http://vk.com/club23595476 .

ИССЛЕДОВАНИЕ КИНЕТИКИ КАРБОНИЗАЦИИ БЕТОНА

Общие сведения о карбонизации бетона

Растворимость СаСО3 в 100 раз ниже, чем Са(ОН)2, поэтому карбонизация повышает стойкость бетона в мягких водах. Карбони­зационный слой цементного камня мало растворяется и значитель­но замедляет диффузию гидроксида кальция в окружающую среду (карбонизация приводит к повышении плотности по­верхностного слоя, однако не предотвращает его растворения полностью).

Глубина карбонизации цементного камня на воздухе при нор­мальном давлении СО2 невелика. Карбонизация свободной, а также частично связанной извести, находящейся на поверхности цемент­ного камня, в первые моменты времени идет быстро. Однако по мере углубления этот процесс замедляется. Глубина карбонизации повышается с увеличением длительности выдерживания цементного камня и бетона в естественных условиях и при пониженной плотности бетона. Искусственная карбонизация

поверхностного слоя при повышенной концентрации СО2 протекает гораздо интенсивнее.

Плотность бетона является важным фактором карбонизации, так время проникания угле­кислого газа в тело камня  с увеличением плотности может  увеличиться до 25 раз. Карбонизация происходит очень быстро при относительной влажности воздуха 50…70 % и гораздо медленнее, если относи­тельная влажность воздуха более 75 % или менее 45 %. При повышении влажности поры заполняются водой и СО2 должен сначала раство­риться и распространиться в воде, чтобы проникнуть в бетон. При пониженной влажности внутренняя жидкость не обладает свойствами, позволяющими ей хорошо растворять Са(ОН)2 и СО2.

Скорость карбонизации бетона зависит также от концентрации углекислого газа, вида цемента его дисперсности и В/Ц.

Одно из уравнений, отражающее кинетику карбонизации

X = a ?2 + b,

где X – глубина карбонизации, см; ? – время карбонизация, годы; a и b – числовые коэффициенты, зависящие от многих факторов, в т. ч. От В/Ц; количества и вида добавки; вида и количества цемента и других факторов.

Глубина карбонизации хорошо сохраненного бетона высокой плотности определяется температурой и.водоцементным отношением по почти линейной зависимости Карбонизация, повышая стойкость бетона к коррозии I вида, снижает долговечность железобетонных конструкций в надводных частях сооружений за счет потери бетоном защитных функций по отношению к стальной арматуре.

При ограниченном содержании в клинкере C3S стойкость це­ментного камня к выщелачиванию повышается, особенно значитель­но у цементного камня из белитовых клинкеров, что свидетельст­вует о важности связывания свободного гидроксида кальция для повышения стойкости цементного камня к выщелачиванию.

Стойкость портландцемента к. коррозии I вида повышается с помощью активным минеральных добавок, способных связывать Са(ОН)2 в ме­нее растворимые соединения.

По данным В.В. Кинда, в цементном камне через 28 суток водного твердения находится следующее количество Са(ОН)2, %:

– на портландцементе без добавок – 9,37;

– на портландцементе с добавкой 30 % трепела – 2,92;

– на портландцементе с добавкой 40 % трепела – 1,50;

– на портландцементе с добавкой 50 % трепела – 0,85.

При введении АМД образовавшиеся в результате реакции пуццоланизации низкоосн?вные гидросиликаты кальция склонны к значительному набуханию, что ведет к повышению плотности бетона. Можно рассчитать необходимое количество добавки для связывания всего выделившегося Са(ОН)2.

Исследования коррозионной стойкости бетонов на глинозе­мистом цементе показали, что она значительно выше, чем у порт­ландцемента. Это связано с тем, что образующийся при гидрата­ции глиноземистого цемента гидрат глинозема заполняет поры це­ментного камня и уплотняет его. Плотность цементного камня на глиноземистом цементе значительно выше, чем на портландцемен­те, следовательно, выше и сравнительная стойкость бетонов на глиноземистом цементе.

http://vk.com/club23595476 . контакты http://vk.com/club23595476 .

xn--90afcnmwva.xn--p1ai

Карбонизация - бетон - Большая Энциклопедия Нефти и Газа, статья, страница 3

Карбонизация - бетон

Cтраница 3

Для бетона на шлакопортландцементе эта зависимость менее отчетлива. Под действием атмосферных осадков карбонизация бетона замедляется. Ее скорость зависит от соотношения продолжительности увлажнения и высушивания.  [32]

Она может быть удалена лишь прокаливанием бетона, но при этом в бетоне произойдут и другие нежелательные изменения деструктивного порядка. Как указывалось, скорость карбонизации бетона в обычных условиях невелика. Для плотных бетонов она составляет доли миллиметра в год. Вообще же она зависит от плотности бетона, его влажности и, естественно, от концентрации углекислоты в воздухе.  [33]

За 38 лет эксплуатации цементного элеватора из бетона на доменном цементе 1: 4 3 при В / Ц6 50 с объемным весом 2 18 и водопоглощением 15 3 % карбонизация внутренних конструкций достигла глубины 30 мм. Последние данные показывают, что карбонизация бетона внутри помещений идет в несколько раз быстрее, чем снаружи, что связано, очевидно, как с концентрацией углекислого газа, так и с относительной влажностью воздуха.  [35]

Скорость фильтрации воды через бетон не постоянна; она может увеличиваться или уменьшаться. Может наступить самоуплотнение бетонной смеси и прекращение фильтрации вследствие карбонизации бетона.  [36]

Процесс коррозии арматуры в бетоне зависит от характера агрессивности сред. В воздушной среде с обычным составом газов при достаточно плотном бетоне происходит постепенная карбонизация бетона, которая не сопровождается его разрушением, однако приводит к потере щелочности, и при достаточной влажности воздуха арматура начинает корродировать. Периодическое увлажнение ускоряет процесс коррозии арматуры в бетоне.  [37]

В бетонах плотной структуры с расходом цемента 180 кг / м3 и выше распространение коррозии по поверхности арматуры меньше, а весовые потери примерно на 1 порядок ниже, чем в поризованном. В термозитобето-ке на песке из гранулированного шлака с расходом цемента 385 кг / м3 стержни практически не имели поражения, а карбонизация бетона минимальная. В других составах карбонизация прошла несколько глубже, в том числе и с добавками кремнеорганической жидкости ГКЖ-94, которая, очевидно, не способствует уплотнению структуры. При рассмотрении структуры бетона в изломе видны отдельные воздушные поры, а под стереоскопическим микроскопом были обнаружены усадочные трещины в сечении образца на поверхности контакта с арматурой, которые и являются первоначальными очагами развития коррозии.  [38]

В табл. 10 приводятся определенные Кишитани эмпирические значения коэффициента / С. Учитывая, что в расчетные формулы входит / С2 в знаменателе, получается, что кроме В ] Ц существенно влияют на скорость карбонизации бетона вид цемента и заполнителей, а также добавки.  [39]

Кроме усадки при высыхании бетон подвергается усадке за счет карбонизации. Это явление было обнаружено только в последнее время и в большинстве имеющихся экспериментальных данных по усадке, величина усадки при высыхании включает в себя и усадку при карбонизации бетона. Однако природа усадки при карбонизации и высыхании совершенно различна.  [40]

Обследование состояния арматуры в испытуемых бетонах показало, что после 1800 циклов увлажнения-высушивания наблюдается коррозия арматуры лишь при толщине защитного слоя, равного 5 мм. Коррозия в виде изъязвления достигает по площади 30 - 40 / о. Карбонизация бетона, проверенная по фенолфталеину, достигает в поверхностном слое всего 2 - 3 мм.  [41]

Общеизвестно, что прочность бетона в благоприятных условиях может возрастать в течение многих лет. Пористый цементный камень, проницаемый для газов и паров, поглощает кислые газы и под их влиянием изменяется химически. Наиболее распространенным кислым газом в атмосфере является углекислый газ, вызывающий карбонизацию бетона.  [43]

Наблюдения за состоянием опытных, не имеющих защитной покраски армоцементных кровель в Ленинграде, показали, что за 8 лет эксплуатации они хорошо сохранились. Верхняя армирующая сетка подверглась коррозии лишь в местах выхода ее на поверхность. При защитном слое в 1 - 2 мм коррозии сетки не наблюдается. Глубина карбонизации бетона сверху не превышает 0 5 мм. Нижние сетки ( со стороны чердака) на больших участках поверхности не имеют защитного слоя и сплошь ржавые.  [44]

Первая определяется видом вяжущего и добавок, а также режимом твердения, вторая - толщиной и плотностью защитного слоя бетона, шириной образующихся в нем трещин. Кроме того, если прочность бетона во времени, как правило, возрастает, его защитная способность падает. Последнее связано с естественной карбонизацией бетона в результате поглощения им углекислоты воздуха, а также с прониканием к арматуре хлор-ионов и других агрессивных веществ. Влага, благоприятная для длительного роста прочности бетона, в определенных условиях способствует возникновению и развитию коррозии арматуры.  [45]

Страницы:      1    2    3    4

www.ngpedia.ru


Смотрите также