1.4 Корректирование состава бетонной смеси. Коэффициент уплотнения бетона


1.4 Корректирование состава бетонной смеси

Корректирование производится в том случае, если бетонная смесь не удовлетворяет проектным требованиям по подвижности или жесткости. Кроме того, необходимость корректирования связана с наличием неоднородности бетонной смеси и данное несоответствие не связано с погрешностями при дозировании.

Примеры корректировки состава бетона приведены в таблице 49. После каждого добавления корректирующих материалов смесь тщательно перемешивают и делают повторное определение подвижности или жесткости до получения заданных показателей.

Продолжительность корректирования не должна превышать 15 минут. В связи с тем, что с введением в состав бетонной смеси корректирующих материалов объем смеси увеличивается, необходимо уточнить объем замеса и произвести пересчет состава сначала на уточненный объем замеса, а затем и на 1 м3 бетонной смеси.

2 Определение коэффициента уплотнения бетонной смеси

Расчет и корректирование состава бетона по методу абсолютных объемов предполагает отсутствие в отформованной бетонной смеси газовой составляющей (поры воздухововлечения и недоуплотнения). Однако такие поры всегда имеют место и их количество можно оценить коэффициентом уплотнения Ку. Для хорошо отформованных смесей он находится в пределах 0,96…0,98.

Коэффициент уплотнения определяют при формовании бетонной смеси в сосуде известного объема. Допускается определение Ку совмещать с изготовлением контрольных образцов-кубов.

Таблица 49 – Примеры корректировки состава бетона

Состояние бетонной смеси

Корректирующие материалы*

материал

количество,

% от исходного

Вытекание цементного молока из-под основания металлического конуса при его заполнении – недостаточная водоудерживающая способность заполнителей

Песок

5...10

Подвижность смеси больше (жесткость меньше) заданной – избыток цементного теста

Песок и крупный заполнитель

5...10

Подвижность смеси меньше (жесткость больше) заданной – недостаток цементного теста

Вода и цемент

при расчетном В/Ц

5…10

В бетонной смеси наблюдается пустоты между зернами крупного заполнителя (недостаток растворной составляющей смеси)

Песок, вода и цемент при расчетном В/Ц

3…5

* Порции материалов следует готовить заранее.

3 Изготовление контрольных образцов-кубов

В связи с тем, что в работе предусматривается определение Ку, совмещаемое с изготовлением контрольных образцов, то перед заполнением форм бетонной смесью они взвешиваются с предварительным смазыванием внутренней поверхности формы машинным маслом для уменьшения адгезии бетона к поверхности.

Уплотнение контрольных образцов бетона производится с учетом марки бетонной смеси по формуемости.

Марка бетона по удобоукладываемости П5 не требует уплотнения, т.к. ее называют «литой», такая смесь должна уплотняться под действием собственной массы.

Для марок бетона по удобоукладываемости ПЗ и П4 уплотнение производят 10-кратным штыкованием металлическим стержнем диаметром 16 мм по спирали от краев формы к ее центру

Для марок бетона по удобоукладываемости П1, Ж1, Ж2 и Ж3 образцы изготовляют вибрированием заполненной бетонной смесью формы, закрепленной на лабораторной виброплощадке (рисунок 37).

Смесь в форме уплотняют до момента прекращения оседания конуса и появления на поверхности цементного молока. Время вибрирования соответствует показателю жесткости, увеличенному на 30 секунд.

Для марки бетона по удобоукладываемости Ж4 уплотнение контрольных образцов производят аналогично, но с применением пригруза, обеспечивающего давление не менее 0,001 МПа.

После окончания формования образцы взвешивают, маркируют с обозначением даты изготовления, номера группы, подгруппы и звена с указанием В/Ц.

Образцы хранят в форме при температуре 18...22 С накрытой влажной тканью. После достижения распалубочной прочности образцы извлекают из формы и хранят в камене нормального твердения до достижения марочной прочности, которая определяется в 28-суточном возрасте. Допускается прочность контрольных образцов определять и в другие сроки с последующим пересчетом на марочную прочность, используя логарифмический закон роста прочности бетона, по формуле

R28 = Rnlg 28 / lg n, (41)

где R28– марочная прочность бетона, МПа;Rn– прочность бетона в возрастеnсуток (n= 3...90 суток), МПа.

Рисунок 37 – Лабораторная виброплощадка

1 – станина; 2 – пружины; 3 – электродвигатель; 4 – эксцентрик; 5 – площадка

Контрольные вопросы

1 Почему бетонная смесь обладает связностью и пластичностью?

1 Так как появляются силы капиллярного стяжения между твердыми частицами, смоченными водой.

2 Так как действуют силы трения между частицами заполнителей.

3 Так как действуют силы трения между растворной составляющей смеси и частицами крупного заполнителя, а пластификатором служат равномерно распределенные в смеси пузырьки вовлеченного воздуха.

4 Тонкодисперсные частицы вяжущего, добавок, пылеватых и глинистых примесей при взаимодействии с водой затворения образуют тесто, в котором на поверхности раздела фаз возникают силы межмолекулярного взаимодействия, капиллярного стяжения, вязкого трения, придающие смеси пластичность.

2 В каких условиях жесткие бетонные смеси пластичны?

1 Жесткие бетонные смеси не обладают пластичностью.

2 Жесткие бетонные смеси обладают пластичностью после перемешивания.

3 Жесткие бетонные смеси обладают пластичностью при сильном вибромеханическом уплотнении.

4 Жесткие бетонные смеси обладают пластичностью при коэффициенте раздвижки зерен более 1,3.

3 Что называется тиксотропностью бетонной смеси?

1 Повышение текучести бетонной смеси пластифицирующими добавками.

2 Уменьшение вязкости после вибромеханического воздействия.

3 Свойство бетонной смеси уменьшать вязкость и становиться более текучей при вибромехаиических воздействиях и загустевать после прекращения воздействия.

4 Изменение консистенции бетонной смеси добавлением воды до величины водоудерживающей способности.

4 По каким показателям оценивается удобоукладываемость бетонной смеси?

1 По подвижности, жесткости и связности.

2 По расслаиваемости и седиментации.

3 По оседанию конуса бетонной смеси при сотрясении бойка.

4 По соотношению свободной и физически связанной воды.

5 Как влияет количество воды затворения на подвижность (жесткость) бетонной смеси?

1 Чем больше воды затворения до определенного предельного значения, тем выше подвижность.

2 С увеличением количества воды затворения улучшается удобоукладываемость смеси, поэтому прочность бетона возрастает.

3 Чем больше воды затворения, тем больше жесткость.

4 Подвижность и жесткость бетонной смеси не зависят от количества воды затворения.

6 Будет ли изменяться подвижность бетонной смеси при изменении вида цемента и неизменной марке?

1 Подвижность бетонной смеси не зависит от вида и марки цемента.

2 Подвижность бетонной смеси зависит от вида, но не зависит от марки цемента.

3 Подвижность бетонной смеси зависит от марки, но не зависит от вида цемента.

4 Подвижность бетонной смеси находится в прямой зависимости от вида и марки цемента.

7 Почему ограничивается время определения показателя удобоукладываемости и корректирования состава бетонной смеси?

1 Чтобы исключить влияние изменения количества воды затворения вследствие ее испарения.

2 Время установлено произвольно.

3 Время установлено по физическим возможностям персонала строительных лабораторий.

4 При увеличении времени наблюдается влияние изменения вязкости смеси вследствие начинающейся гидратации цемента.

8 Как корректируется подвижность бетонной смеси в случае превышения проектной величины?

1 Уменьшается расход песка.

2 Увеличивается расход крупного заполнителя.

3 Увеличивается расход песка или совместно песка и крупного заполнителя в расчетном соотношении.

4 Увеличивается расход цемента.

9 Что такое коэффициент уплотнения бетонной смеси?

1 Отношение объема пустот уплотненной бетонной смеси к общему объему пустот в неуплотненной смеси.

2 Отношение средней плотности бетонной смеси, уплотненной конкретным способом, к ее теоретической средней плотности.

3 Отношение теоретической средней плотности бетонной смеси к средней плотности смеси, уплотненной конкретным способом.

4 Разность между теоретической средней плотностью бетонной смеси и средней плотностью смеси, уплотненной конкретным способом.

10 Как влияет седиментация бетонной смеси на основные свойства бетона?

1 Ее влиянием можно пренебречь.

2 Седиментация бетонной смеси повышает плотность и однородность бетона.

3 Седиментация бетонной смеси снижает однородность и прочность бетона.

4 Седиментация бетонной смеси способствует повышению удобоукладываемости бетонной смеси, однако плотность и прочность бетона снижается.

Лабораторная работа № 13

ОПРЕДЕЛЕНИЕ ПРОЧНОСТИ БЕТОНА

Общие сведения

Качество бетона и его работа в сооружениях и конструкциях определяется свойствами, важнейшим из которых является прочность.

Под прочностью понимают способность материала сопротивляться разрушению от внутренних напряжений, возникающих под действием внешних нагрузок.

Бетон относится к материалам, которые хорошо сопротивляются сжимающим нагрузкам и усилиям; значительно хуже – растягивающим нагрузкам и усилий. Поэтому строительные конструкции проектируют так, чтобы бетон в них воспринимал сжимающие нагрузки. При необходимости восприятия растягивающих нагрузок и усилий конструкции армируют стальной арматурой, которая и обладает высоким сопротивлением этим нагрузкам.

Прочность бетона является интегральной характеристикой, которая зависит от свойств компонентов бетона, его состава, условий приготовления, твердения, эксплуатации и испытания. В свою очередь, с прочностью бетона связан и ряд других его свойств.

Не вдаваясь в подробности современных представлений о структуре и процессе разрушения бетона, можно выделить следующие основные положения:

– прочность бетона зависит от структуры и свойств цементного камня, который скрепляет зерна заполнителя в монолит. Структура и свойства цементного камня зависят от его минерального состава, водоцементного отношения, тонкости помола цемента, возраста, условий приготовления и твердения, от введенных добавок. Свойства бетона существенно зависят от вида и качества заполнителей. И в тех, и в других случаях прочность бетона может отличаться в 1,5...2,0 раза;

– разрушение бетона происходит постепенно. Оно сопровождается перераспределением напряжений и вовлечением в трещинообразование все большего объема материала, вплоть до образования сплошного разрыва, зависящего от формы образца и конструкции, ее размеров и других факторов;

– разрушение бетона при сжатии связано с развитием микротрещин отрыва, направленных параллельно действующему усилию. Происходит кажущееся увеличение объема образца, но в действительности нарушается сплошность материала;

– жидкая фаза бетона оказывает большое влияние на процесс разрушения. Степень влияния этого фактора зависит от скорости приложения нагрузки.

На результат определения прочности бетона влияет много факторов, которые можно разделить на три группы: статистические, технологические и методические.

К статистическим факторам следует отнести колебания активности цемента, его нормальной густоты и минерального состава, качества заполнителей, приводящие к неоднородности структуры бетона. В данном случае качество бетона определяется его средней прочностью и однородностью, которая оценивается по коэффициенту вариации прочности. Для нормирования прочности необходимо использовать стандартную характеристику – класс бетона В.

Класс бетона – это числовая характеристика прочности бетона, принимаемая с гарантированной обеспеченностью (обычно 0,95). Это значит, что установленная классом прочность бетона обеспечивается не менее чем в 95 случаях из 100.

Установлены следующие классы тяжелого бетона по прочности при сжатии (МПа): В3,5; В5; В7,5; B10; B12; B15; В20; B25; B30; В35; B40; В45; В50; В55; В60. Допускается также применение промежуточных классов В22,5 и B27,5. Например, класс бетона B20 следует понимать так: с вероятностью 0,95 при определении предела прочности при сжатии бетона на любом произвольно взятом участке конструкции будет получен результат 20 МПа и более, и лишь в 5% случаев можно ожидать значения менее 20 МПа. Для конструкций, запроектированных без учета возможных колебаний прочности, показатели прочности бетона характеризуются марками.

Марка бетона – числовая характеристика прочности бетона, принимаемая по его среднему значению, т.е. без учета статистического коэффициента вариации.

К технологическим факторам следует отнести факторы, связанные с приготовлением образцов (непараллельность и неплоскостность граней, шероховатость поверхности, возможность расслоения бетона по высоте).

К методическим факторам следует отнести различные аспекты методики испытаний (конструкции и особенности пресса, размеры образцов, скорость нагружения, влажность бетона и др.).

Метод определения прочности бетона испытанием контрольных образцов довольно прост и легко исполним для различных видов силовых воздействий.

С точки зрения соответствия результатов испытаний

Прочность бетона, определенная в лабораторных условиях, может значительно отличаться от прочности бетона, определенной в реальных конструкциях. Это связано со следующими недостатками:

– различие условий формования и твердения бетона в образцах и конструкциях;

– невозможность определить прочность бетона в ранее возведенных конструкциях;

– невозможность достоверно оценить прочность бетона и охарактеризовать дефектность его в различных частях конструкции;

– затрудненность проведения оперативного контроля качества бетона;

– невозможность проведения сплошного контроля качества бетона.

Для уменьшения влияния этих факторов на точность определения прочности бетона применяются наразрушающие методы контроля, основной особенностью которых является оценка качества бетона по косвенной характеристике при наличии соответствующей градуировочной зависимости между изучаемым свойством бетона и косвенной характеристикой. Такими косвенными характеристиками являются: скорость распространения ультразвука в бетоне; величина отскока бойка прибора от поверхности бетона; размер отпечатка на поверхности бетона; усилие местного скола бетона на ребре конструкции и ряд других.

Неразрушающими методами можно определять прочность бетона всех видов ее нормируемого уровня (передаточной, распалубочной, отпускной, марочной), контролировать набор прочности при твердении, а также при обследовании эксплуатируемых зданий и сооружений.

Цель работы

– изучить стандартный метод разрушающего контроля прочности бетона;

– исследовать влияние В/Ц на прочность бетона;

– определить В/Ц для бетона проектной марки по результатам испытания образцов.

Порядок выполнения работы

Каждое звено студентов определяет предел прочности при сжатии разрушающим методом бетонных образцов, изготовленных при выполнении работы № 12. По результатам определения предела прочности при сжатии образцов различных составов определяется оптимальное значение В/Ц для получения запроектированной марки бетона.

Методы испытаний

studfiles.net

Способы уплотнения бетона, коэффициент уплотнения

Из-за добавления в бетонную смесь различных компонентов в ее массе нередко возникают пустоты. Они становятся причинами снижения качества материала и возникновения деформаций готовых бетонных конструкций, вплоть до полного разрушения возведенного здания.

Чтобы изменить ситуацию и увеличить качественные характеристики бетона следует учесть особые моменты при его изготовлении. Так, уплотнение бетона – важный этап в подобных работах, так как способствует удалению излишнего воздуха и жидкости из подготовленного раствора. В итоге получают плотную однородную консистенцию, делающую готовый объект долговечным.

Способы уплотнения бетона

Уплотнить бетонную массу можно несколькими способами, все зависит от масштабности проекта и возможностей строителей. При небольших объемах стройки часто применяют ручной способ, на крупных объектах не обойтись без специального автоматического оборудования.

Независимо от применяемого способа уплотнения смеси следует добиться результата, установленного стандартами для различных строительных объектов. Т.е. в каждом конкретном случае разрабатывается свой показатель плотности, обеспечивающий безопасное использование объекта в будущем. Только вовремя принятые меры по достижению соответствующего качества бетона повысят степень защиты будущих конструкций и позволят сэкономить средства на ремонтных и реставрационных работах.

Выбор того или иного способа уплотнения бетона зависит от многих факторов. При необходимости следует проконсультироваться со знающими специалистами. Максимальное качество бетона может быть достигнуто при правильных работах по его уплотнению следующими способами:

  • Штыкование – процедура проталкивания щебня, оставшегося между используемой в бетоне арматуры. После изготовления смеси рекомендуется провести этот процесс по всему объему занятой емкости. Основной инструмент для штыкования - металлическая шуровка, представляющая собой армированный прут или балку весом до 4 кг.
  • Вибрирование – способ уплотнения бетона, при котором специалист осуществляет колебательные движения и встряхивания. Нужный результат по плотности и пластичности достигается гораздо быстрее чем при штыковании. Вид оборудования зависит от типа производителя. Промышленное изготовление осуществляется с использованием виброплощадок, частные производители применяют виброустановки для поверхностных и внутренних работ по уплотнению.
  • Прессование – предполагает оказание давления на подготовленную смесь. Хотя такой способ и обеспечивает высокую прочность бетона, он применяется довольно редко. Дорогое по стоимости оборудование - прессы, в большинстве случаев оказываются экономически нецелесообразным вложением средств производителя. Однако в некоторых областях без прессования не обойтись, например, кораблестроение предполагает использование только такого бетона.
  • Центрифугирование – вращательная технология позволяет избавиться от воздуха и жидкости в смеси, увеличивая плотность бетона. Такой метод белее эффективен по сравнению с вибрированием, но его применение требует добавления в смесь большего объема цемента.
  • Вакуумирование – особенность способа заключается в подаче давления на смесь с разреживанием воздуха. Эффективность такого способа приравнивается к прессованию. Если ваккумирование проводить совместно с вибрированием, можно добиться сверхпрочного результата: благодаря вакууму удаляются воздух и вода, а вибрация смеси позволяет заполнить образовавшиеся пустоты твердыми компонентами.

Для получения необходимого результата от использования выбранного метода следует учитывать время работ. Слишком долгий процесс может стать причиной разделения смеси: наполнитель окажется внизу, а раствор – наверху.

Коэффициент уплотнения и факторы, влияющие на его значение

Процедуры по уплотнению бетонной смеси неизменно приведут к уменьшению ее объема. Поэтому при расчете необходимой массы следует учесть коэффициент уплотнения бетона, представляющий собой соотношение первоначального веса и очищенного от воздушных участков объема. Существующие нормы определяют его оптимальное значение в 1,02. Это означает, что по сравнению с залитым объемом масса в конструкции после процедуры уменьшиться на 2%.

Значение коэффициента может быть больше или меньше оптимального. На это влияют такие факторы, как:

  • Состав компонентов;
  • Фракционность наполнителя;
  • Объект, для строительства которого предназначена смесь;
  • Эффективность выбранного способа уплотнения.

При применении готовой бетонной смеси невозможно визуально определить, достигнут ли нужный показатель плотности. Поэтому для надежности и снижения риска расслаивания будущей конструкции в раствор добавляют смесь с высокой пластичностью.

tambovbeton.ru

Достижение необходимых свойств через уплотнение бетонной смеси - Статьи

Достижение необходимых качественных показателей бетона возможно лишь при тщательном уплотнении бетонных смесей. При поступлении из смесителя бетонная смесь имеет достаточно большое число воздушных пор. Жесткие смеси образуют неустойчивые рыхлые структуры с крупными воздушными полостями. Отношение для них объема воздушных пор к общему объему смеси достигает 40-50%. Пластичные смеси почти полностью водонасыщены, содержание воздуха в них может не превышать 5-20%. В среднем на каждый процент воздушных пор приходится 5-6% падения прочности. Эти данные получены для бетонов с содержанием цементного камня 300-500 л/м3. . При снижении расхода цемента недоуплотнение сказывается на прочности еще более заметно и может дойти до 7-8% на 1 % сохраняемого воздуха. Недоуплотнение отрицательно сказывается и на ряд других свойств затвердевшего бетона. Степень уплотнения бетонной смеси определяется коэффициентом уплотнения: Ку=1-П, где П - пористость уплотненной смеси.

Для бетонных смесей, находящихся в статическом состоянии, характерно наличие сухого трения между твердыми компонентами. Трение возрастает с уменьшением содержания раствора в бетонной смеси, уменьшением количества воды затворения, применении заполнителей остроугольной формы. Силы внутреннего трения уменьшаются до минимума при механических воздействиях на бетонную смесь, прекращение этих воздействий приводит к восстановлению внутреннего трения. Способность к тиксотропному разжижению под влиянием механических воздействий характерна для многих коллоидных систем, образование которых происходит за счет сил Ван-дер-Ваальса, в том числе и цементного теста. При механических воздействиях и особенно при вибрировании происходит резкое снижение сопротивления сдвигу и бетонная смесь начинает подчиняться законам гидростатики. Под действием градиента скорости, развиваемого при виброуплотнении, вязкость смеси снижается на несколько порядков. Основные способы механического воздействия на бетонную смесь с целью ее уплотнения и формования изделий можно разделить на 3 группы: - статические (прессование, укатка, вакуумирование), - динамические (вибрирование, трамбование), - комбинированные (вибропрессование, вибровакуумирование, виброштампование и др.). Более 90% всех бетонных изделий изготовляется с помощью вибрирования. Динамические воздействия при укладке бетонной смеси используются с 1860 г., тогда при укладке жестких смесей начали использовать трамбование. Вибрирование бетонной смеси при возведении крупных объектов начал применять Р. Фрейсинев 1917 г. Широко в строительстве вибрация стала применяться с 30-х годов XX столетия. По Фрейсине при вибрировании бетонных смесей происходит взаимное сближение и отталкивание частиц, сопровождающееся уменьшением внутреннего трения за счет перемещения вниз тяжелых и всплытия вверх более легких частиц. Современные представления о механизме уплотнения вибрированием дополняются волновым характером распространения механических колебаний и моделированием бетонной смеси акустической средой с высоким коэффициентом затухания. Энергия при распространении колебаний от излучателя расходуется в бетонной смеси на преодоление сил трения и сцепления между частицами, разрушение структуры цементного теста и снижение вязкости среды. Смесь приобретает свойства тяжелой жидкости и способность к течению и заполнению формы. Перепад давлений в различных слоях смеси способствует миграции и удалению воздушных включений. При этом частицы заполнителя стремятся занять устойчивое положение, обеспечивающее плотную пространственную структуру. По виду колебаний, возбуждаемых вибратором, различают периодические синусоидальные, периодические несинусоидальные, одночастотные и поличастотные колебания. Исследования показали, что оптимальное значение частоты вибрирования связано с амплитудой колебаний, крупностью заполнителя, удобоукладываемостью бетонной смеси и др. С уменьшением крупности заполнителя соответственно увеличивается частота колебаний. Так, например, при крупности заполнителя 40 мм оптимальная частота равна 38 Гц, при крупности зерен 20 мм - 50 Гц, а при максимальных размерах зерен 10 мм -100 Гц. Для уплотнения мелкозернистых бетонных смесей в густоармированных конструкциях целесообразно применять вибрирование с частотой 100-133 Гц. Увеличение частоты колебаний позволяет в целом ряде случаев уменьшить продолжительность вибрирования и увеличить радиус действия вибратора. Применение разночастотных режимов вибрации позволяет улучшить упаковку различного по крупности заполнителя. Для каждой бетонной смеси при принятых параметрах колебаний имеется оптимальная продолжительность вибрирования. При недостаточной его продолжительности наблюдается недоуплотнение бетона и снижение его прочности; слишком длительное вибрирование не дает заметного повышения плотности и прочности бетона и может вызвать расслоение пластичных смесей. Обычно рекомендуется продолжительность вибрирования принимать вдвое большей показателя жесткости бетонной смеси, определенной на стандартной лабораторной площадке. Процесс виброуплотнения бетонной смеси состоит из трех стадий: переукладки составляющих, их сближения и компрессионного уплотнения. Первая стадия заключается в разрушении первичной неустойчивой структуры, изменении взаимной ориентации зерен, перестройки «скелета», который образуют заполнители смеси, и минимизации его объема, удалении основной массы воздуха. Первая стадия виброуплотнения является наиболее короткой. В течение второй стадии уплотнения происходит сближение отдельных зерен в результате перераспределения по объему растворной составляющей и дополнительного удаления воздушных включений. Прохождению второй стадии уплотнения способствуют статические нагрузки. Завершение второй стадии определяется окончанием осадки бетонной смеси. Дальнейшее вибрирование не повышает плотность бетона на завершающей третьей стадии. Окончательное уплотнение бетонной смеси может достигаться дополнительным (компрессионным) обжатием. Оно позволяет обеспечить более равномерное распределение воды, содержащейся в порах, а также уплотнение контактов между зернами заполнителя. При вибрировании компрессионное обжатие достигается увеличением статического давления в два-три раза в течение нескольких минут. При безвибрационном уплотнении этот эффект возможен при прессовании и более длительной выдержке. На первой стадии уплотнение бетонной смеси подчиняется закономерностям сыпучей среды, на второй она ведет себя как упруговязкопластичное тело, на третьей - как многокомпонентная зернистая среда. По Б.В. Гусеву и В.Г. Зазимко на основе представлений о бетоне как композиционном материале предлагается разделять процесс виброуплотнения на две стадии: первую - перекомпоновку крупного заполнителя и образование макроструктуры и вторую -тиксотропные изменения цементного теста и формирование микроструктуры. На первой стадии рекомендуются колебания низкой частоты с большой амплитудой, когда преодолеваются силы сцепления и сухого трения неуплотненных частиц бетонной смеси. В зависимости от свойств смеси и размеров крупного заполнителя для преодоления предельного напряжения сдвигу необходимы колебания с амплитудой 1-5 мм и интенсивностью по ускорению (1,5-3,5)д. На второй стадии для достаточного тиксотропного разжижения растворной составляющей целесообразны повышенные частоты или введение пластифицирующих добавок. Оптимальный интервал выдерживания бетонной смеси до вибрирования зависит от ее состава, консистенции, вида вяжущего и температурно-влажностных условий. Например, дорожные цементно-бетонные смеси рекомендуется обычно уплотнять через 50-60 мин. после их изготовления при температуре окружающего воздуха ниже 15°С, через 40-30 мин. при температуре воздуха 15-20°С и через 20-30 мин. - выше 25 °С. Современные виброуплотняющие машины имеют разнообразную конструкцию. Основным их элементом являются инерционные вибровозбудители дебалансного или самобалансного типа. В качестве рабочих частот вибромашин обычно применяются частоты 50 Гц и выше. Традиционное виброоборудование как правило, не позволяет оптимизировать рабочие режимы уплотнения и обеспечить достаточно высокие санитарно-гигиенические характеристики. Находит применение вибрационное оборудование, создающее режимы линейного (синусоидального) знакопеременного силового воздействия при низких - до 33 Гц, средних - 33-66 Гц и высоких частотах. Ударные средства обеспечивают режим нелинейного напряжения, когда к смеси подводится ударный импульс с частотой приложения обычно от 25 до 7 Гц. В настоящее время для уплотнения подвижных смесей с предотвращением их расслаиваемости получает распространение вибрационное оборудование, обеспечивающее эффективные низкочастотные симметричные режимы с уменьшением уровня шума. Время уплотнения и показатель раствороотделения бетонных смесей при низких частотах в 1,5-2 раза меньше по сравнению с частотой 50 Гц. Для уплотнения жестких и сверхжестких смесей предложены эффективные низкочастотные ударно-вибрационные режимы с частотой 15-30 Гц. При низкочастотных асимметричных режимах более интенсивно проявляется эффект пластификации бетонных смесей добавками ПАВ, существенно улучшается качество поверхности изделий. Наряду с динамическими для уплотнения смесей применяют и статические силовые воздействия. Их величина, как правило, не превышает 0,015-0,02 МПа. Пригруз в сочетании с вибрированием позволяет существенно сокращать продолжительность формования жестких бетонных смесей, улучшает равномерность уплотнения, препятствует расслоению смесей, в особенности на легких заполнителях. Для уплотнения сверхжестких смесей эффективно вибропрессование, широко используемое для изготовления мелкоштучных изделий типа тротуарных плит, стеновых блоков и др. К разновидностям вибропрессования можно отнести виброштампование и силовой вибропрокат. При первом способе вибрационное воздействие и статическое давление создаются одним рабочим органом - виброштампом, при втором вибрирование сочетается с механическим давлением на бетон вибровалков прокатного стана. Вибропротяжная технология позволяет выполнять непрерывное безопалубочное формование с помощью специальных агрегатов, включающих вибробункер, питатель и виброформующее устройство. Роль статического давления осуществляет подпор смеси в вибробункере и ее сопротивление при формообразовании. При вибровакуумировании в бетонной смеси, предварительно уплотненной вибрированием, с помощью вакуумных устройств создается разрежение и, благодаря разности давлений, из бетона отсасываются воздух и избыточная вода. При вакуумировании также возникает прессующий эффект от давления вакуумщита на поверхность обрабатываемого слоя бетонной смеси. Этот эффект усиливают дополнительным давлением (вакуум- прессование). При вакуумировании отсасывается обычно 15-20% воды затворения и до 80% содержащегося в бетонной смеси воздуха, что дает возможность повысить прочность бетона на 40-60% через 2-3 дня и на 20-25% в 28-суточном возрасте. Глубина вакуумирования бетона не превышает 10-12 см, поэтому этот способ эффективен для тонкостенных конструкций. Возможно применение способа вибровакуумирования для улучшения качества поверхностного слоя («закалки») конструкций. Из безвибрационных способов уплотнения применяют прессование, роликовое формование, центрифугирование и литьевое формование. Способ прессования основан на уплотнении бетонной смеси с выделением свободной воды при объемном обжатии формуемых изделий. При этом целесообразно применять жесткие сыпучие смеси с малым водосодержанием. Возможно использование и подвижных смесей, когда статическим давлением иногда в сочетании с электроосмосом осуществляется отжатие избытка воды. Удаление жидкой фазы из бетонной смеси при прессовании сопровождается фильтрационными процессами, которые определяются градиентами давления, размером капилляров и др. При рассмотрении механизма уплотнения бетонной смеси прессованием наибольшее значение имеют свободная и капиллярная вода, а также вода адсорбционных оболочек. При достижении определенного давления твердые частицы бетонной смеси сближаются, в результате чего часть пленочной воды переходит в свободное состояние и может быть отжата. Отжимание воды под давлением носит затухающий характер и идет до тех пор, пока внешнее давление больше суммы сил внутрикапиллярного давления, сопротивления фильтрации и вязкости жидкой фазы. По И.Н. Дударю процесс отжимания остаточной воды из цементного теста при В/Ц > К н. г (где К н. г - нормальная густота) лимитируется сопротивлением фильтрации. Изменение давления на первом этапе влияет только на скорость фильтрации и незначительно на количество выжатой воды. Начиная с определенного расстояния, между частицами а = 10" ...10~9м необходимо учитывать силы молекулярного взаимодействия дисперсной фазы и дисперсионной среды. На втором этапе силового влияния давления большое значение приобретает трение между частицами цементного теста и его нелинейная деформация. В результате внутреннее сопротивление давлению увеличивается и фильтрация воды уменьшается. Роль давления заключается не только в снижении В/Ц. Дополнительный прирост прочности прессованных бетонов обеспечивается за счет формирования более качественной структуры и, в частности, уменьшения радиуса пор, устранения макродефектов контактной зоны и дефектов, связанных с седиментационными процессами. Динамика уплотнения цементного теста в условиях прессования и технологические особенности способов Уплотнения бетонной смеси с отжатием воды обстоятельно изучены И.Н. Ахвердовым. Им установлены закономерности сжимаемости цементного теста и влияния прессующего Давления на остаточное В/Ц - (В/Ц)ост По И.Н. Ахвердову максимальное сближение цементных частиц имеет место при Х = (В/Ц)нач/Кнт =0,876. Между (В/Ц)ост и прессующим давлением существует такая же функциональная зависимость, как между усилием и деформациями в реальных твердых телах. Уплотненное под давлением цементное тесто при (В/Ц)ост менее 0,876Кнг не проявляет обратимых тиксотропных свойств, в результате резкого возрастания сил взаимодействия между частицами. По мере уменьшения содержания воды затворения все более отрицательно на плотность и прочность цементного камня сказывается влияние упругого последействия после снятия внешнего давления. Более полному прохождению ионообменных процессов при гидратации цемента и повышению прочности способствует оптимальное время прессования. Интенсивный рост прочности цементного камня происходит до прессующего давления 100 МПа, на практике давление прессования обычно не превышает 10-15 МПа. Эффективным способом получения сверхпрочных бетонов и экономии цемента является длительное объемное прессование бетонной смеси. Как показано Е.М. Бабичем, в результате длительного (2-Зсут) прессования прочность бетона при сжатии увеличивается на 60-140% и может достигать 100-150 МПа. При заданной прочности возможна экономия цемента до 35%. Наибольший эффект длительного прессования достигается при применении давления (5-15 МПа) в интервале схватывания цемента. В результате отжатия воды водоцементное отношение длительно прессованных бетонов достигает 0,18-0,20. Экспериментальными исследованиями установлена целесообразность предварительного, до прессования, вибрирования бетонной смеси. Такая технология, реализуемая, например, при производстве виброгидропрессованных труб, позволяет обеспечить прочность бетона в 1,35-1,8 раз выше, чем при обычном вибрировании. Высокие физико-механические свойства бетона обеспечиваются также при термосиловой технологии, основанной на комплексном воздействии внешнего давления и нагревания. При этом бетон находится под действием давления и температуры до приобретения критической прочности, способной выдерживать напряжения, возникающие при снятии давления. При формовании изделий трубчатого сечения эффективен способ распределения и уплотнения бетонной смеси центрифугированием. Эффективным способом уменьшения расхода цемента (до 25-30%) и повышения однородности структуры центрифугированного бетона является применение виброцентрифугирования. Виброцентрифугированием можно формовать изделия кольцевого сечения из бетонной смеси при начальном В/Ц цементного теста, близком к его нормальной густоте (Кн г), в то время как при послойном центрифугировании оно составляет (1,2-1,3)Кнг. Виброцентрифугированием удается повысить прочность бетона при однослойном формовании примерно на такую же величину, как при трехслойном центрифугировании. К безвибрационным способам уплотнения относится бетонирование набрызгом, при котором бетонная смесь уплотняется под действием интенсивных инерционных сил. Характерным для метода набрызга является совмещение в едином производственном процессе транспортирования, укладки и уплотнения бетонной смеси при полной механизации всех технологических операций. На практике метод набрызга реализуется с применением пневматических аппаратов в виде «сухого» или «мокрого» торкретирования и шприцбетонирования. «Сухое» торкретирование заключается в нанесении на поверхность под давлением сжатого воздуха одного или нескольких слоев цементно-песчаного раствора, подаваемого по шлангу в виде сухой смеси, затворяемой водой при выходе из сопла. «Мокрое» торкретирование (способ пневмобетона) отличается применением готовых цементно-песчаных растворов, диспергируемых в отдельные гранулы, транспортируемые во взвешенном состоянии. Шприц-бетонирование заключается во введении в сухую смесь крупного заполнителя - щебня или гравия фракции до 25-30 мм, добавок-ускорителей схватывания и твердения и др. В последние годы шприц-бетон известен больше под общим названием набрызг-бетон. При торкретировании частицы удерживаются на бетонируемой поверхности силами поверхностного натяжения.

Авторы: Л. И. Дворкин, О. Л. Дворкин

m350.ru

Коэффициент уплотнения бетонной смеси - это... Что такое Коэффициент уплотнения бетонной смеси?

Коэффициент уплотнения бетонной смеси – отношение единицы объема уплотненной бетонной сме­си к ее первоначальному объему.

[Пособие к СНиП 3.09.01-85]

Коэффициент уплотнения бетонной смеси – отношение суммы абсолютных объемов всех компонентов бетона к фактическому объему после уплотнения, включая вовлеченный воздух.

[Ушеров-Маршак А. В. Бетоноведение: лексикон. М.: РИФ Стройматериалы.- 2009. – 112 с.]

Рубрика термина: Общие термины, бетон

Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника, Автотранспорт, Акустические материалы, Акустические свойства, Арки, Арматура, Арматурное оборудование, Архитектура, Асбест, Аспирация, Асфальт, Балки, Без рубрики, Бетон, Бетонные и железобетонные, Блоки, Блоки оконные и дверные, Бревно, Брус, Ванты, Вентиляция, Весовое оборудование, Виброзащита, Вибротехника, Виды арматуры, Виды бетона, Виды вибрации, Виды испарений, Виды испытаний, Виды камней, Виды кирпича, Виды кладки, Виды контроля, Виды коррозии, Виды нагрузок на материалы, Виды полов, Виды стекла, Виды цемента, Водонапорное оборудование, Водоснабжение, вода, Вяжущие вещества, Герметики, Гидроизоляционное оборудование, Гидроизоляционные материалы, Гипс, Горное оборудование, Горные породы, Горючесть материалов, Гравий, Грузоподъемные механизмы, Грунтовки, ДВП, Деревообрабатывающее оборудование, Деревообработка, ДЕФЕКТЫ, Дефекты керамики, Дефекты краски, Дефекты стекла, Дефекты структуры бетона, Дефекты, деревообработка, Деформации материалов, Добавки, Добавки в бетон, Добавки к цементу, Дозаторы, Древесина, ДСП, ЖД транспорт, Заводы, Заводы, производства, цеха, Замазки, Заполнители для бетона, Защита бетона, Защита древесины, Защита от коррозии, Звукопоглащающий материал, Золы, Известь, Изделия деревянные, Изделия из стекла, Инструменты, Инструменты геодезия, Испытания бетона, Испытательное оборудование, Качество цемента, Качество, контроль, Керамика, Керамика и огнеупоры, Клеи, Клинкер, Колодцы, Колонны, Компрессорное оборудование, Конвеера, Конструкции ЖБИ, Конструкции металлические, Конструкции прочие, Коррозия материалов, Крановое оборудование, Краски, Лаки, Легкие бетоны, Легкие наполнители для бетона, Лестницы, Лотки, Мастики, Мельницы, Минералы, Монтажное оборудование, Мосты, Напыления, Обжиговое оборудование, Обои, Оборудование, Оборудование для производства бетона, Оборудование для производства вяжущие, Оборудование для производства керамики, Оборудование для производства стекла, Оборудование для производства цемента, Общие, Общие термины, Общие термины, бетон, Общие термины, деревообработка, Общие термины, оборудование, Общие, заводы, Общие, заполнители, Общие, качество, Общие, коррозия, Общие, краски, Общие, стекло, Огнезащита материалов, Огнеупоры, Опалубка, Освещение, Отделочные материалы, Отклонения при испытаниях, Отходы, Отходы производства, Панели, Паркет, Перемычки, Песок, Пигменты, Пиломатериал, Питатели, Пластификаторы для бетона, Пластифицирующие добавки, Плиты, Покрытия, Полимерное оборудование, Полимеры, Половое покрытие, Полы, Прессовое оборудование, Приборы, Приспособления, Прогоны, Проектирование, Производства, Противоморозные добавки, Противопожарное оборудование, Прочие, Прочие, бетон, Прочие, замазки, Прочие, краски, Прочие, оборудование, Разновидности древесины, Разрушения материалов, Раствор, Ригеля, Сваи, Сваизабивное оборудование, Сварка, Сварочное оборудование, Свойства, Свойства бетона, Свойства вяжущих веществ, Свойства горной породы, Свойства камней, Свойства материалов, Свойства цемента, Сейсмика, Склады, Скобяные изделия, Смеси сухие, Смолы, Стекло, Строительная химия, Строительные материалы, Суперпластификаторы, Сушильное оборудование, Сушка, Сушка, деревообработка, Сырье, Теория и расчет конструкций, Тепловое оборудование, Тепловые свойства материалов, Теплоизоляционные материалы, Теплоизоляционные свойства материалов, Термовлажносная обработка бетона, Техника безопасности, Технологии, Технологии бетонирования, Технологии керамики, Трубы, Фанера, Фермы, Фибра, Фундаменты, Фурнитура, Цемент, Цеха, Шлаки, Шлифовальное оборудование, Шпаклевки, Шпон, Штукатурное оборудование, Шум, Щебень, Экономика, Эмали, Эмульсии, Энергетическое оборудование

Источник: Энциклопедия терминов, определений и пояснений строительных материалов

Энциклопедия терминов, определений и пояснений строительных материалов. - Калининград. Под редакцией Ложкина В.П.. 2015-2016.

construction_materials.academic.ru


Смотрите также