1.2.2. Реальное строение металлических кристаллов. Кристаллическая решетка бетона


Кристаллическая решетка

Твердые кристаллы можно представить как трехмерные конструкции, в которых четко повторяется один и тот же элемент структуры во всех направлениях. Геометрически правильная форма кристаллов обусловлена ​​их строго закономерным внутренним строением. Если центры притяжения атомов, ионов или молекул в кристалле изобразить в виде точек, то получим трехмерное регулярное распределение таких точек, которое называется кристаллической решеткой, а сами точки — узлы кристаллической решетки. Определенная внешняя форма кристаллов является следствием их внутренней структуры, которая связана именно с кристаллической решеткой.

Кристаллическая решетка — это воображаемый геометрический образ для анализа строения кристаллов, который представляет собой объемно-пространственную сетчатую структуру, в узлах которой располагаются атомы, ионы или молекулы вещества.

Для характеристики кристаллической решетки используют следующие параметры:

  1. Энергия кристаллической решетки Екр [КДж / моль] — это энергия, выделяющаяся при образовании 1 моля кристалла из микрочастиц (атомов, молекул, ионов), которые находятся в газообразном состоянии и удалены друг от друга на такое расстояние, что исключается возможность их взаимодействия.
  2. Константа кристаллической решетки d [A0] — наименьшее расстояние между центрами двух частиц в соседних узлах кристаллической решетки, соединенных химической связью.
  3. Координационное число — количество ближайших частиц, окружающих в пространстве центральную частицу и сочетаются с ней химической связью.

Основой кристаллической решетки является элементарная ячейка, которая повторяется в кристалле бесконечное количество раз.

Элементарная ячейка — это наименьшая структурная единица кристаллической решетки, которая обнаруживает все свойства ее симметрии.

Упрощенно элементарную ячейку можно определить как малую часть кристаллической решетки, которая еще выявляет характерные особенности ее кристаллов. Признаки элементарной ячейки описываются с помощью трех правил Бреве :

  • симметрия элементарной ячейки должна соответствовать симметрии кристаллической решетки;
  • элементарная ячейка должна иметь максимальное количество одинаковых ребер а, b , с и одинаковых углов между ними a , b , g . ;
  • при условии соблюдения первых двух правил элементарная ячейка должна занимать минимальный объем.

Для описания формы кристаллов используют систему трех кристаллографических осей а, b, с, которые отличаются от обычных координатных осей тем, что они являются отрезками определенной длины, углы между которыми a, b, g могут быть как прямыми, так и непрямыми.

Модель кристаллической структуры: а) кристаллическая rратка с выделенной элементарной ячейкой; б) элементарная ячейка с обозначениями гранных углов

Форму кристалла изучает наука геометрическая кристаллография, одним из основных положений которой является закон постоянства гранных углов: для всех кристаллов данного вещества углы между соответствующими гранями всегда остаются одинаковыми.

Если взять большое количество элементарных ячеек и заполнить ими плотно друг к другу определенный объем, сохраняя параллельность граней и ребер, то образуется монокристалл идеальной строения. Но на практике чаще всего встречаются поликристаллов, в которых регулярные структуры существуют в определенных пределах, по которым ориентация регулярности резко меняется.

В зависимости от соотношения длин ребер а, b, с и углов a, b, g между гранями элементарной ячейки различают семь систем — так называемых сингоний кристаллов. Однако элементарная ячейка может быть построенной и таким образом, что она имеет дополнительные узлы, которые размещаются внутри ее объема или на всех ее гранях — такие решетки называются соответственно объемноцентрированными и гранецентрированными. Если дополнительные узлы находятся только на двух противоположных гранях (верхний и нижний), то это базоцентрированная решетка. С учетом возможности дополнительных узлов существует всего 14 типов кристаллических решеток.

Внешняя форма и особенности внутреннего строения кристаллов определяются принципом плотной «упаковки» : наиболее устойчивой, а потому и наиболее вероятной структурой будет такая, которая соответствует наиболее плотному расположению частиц в кристалле и в которой остается наименьшее по объему свободное пространство.

Типы кристаллических решеток

В зависимости от природы частиц, содержащихся в узлах кристаллической решетки, а также от природы химических связей между ними, различаются четыре основных типа кристаллических решеток.

Ионные решетки

Ионные решетки построены из разноименных ионов, расположенных в узлах решетки и связанные силами электростатического притяжения. Поэтому структура ионной кристаллической решетки должна обеспечить ее электронейтральность. Ионы могут быть простыми (Na+, Cl— ) или сложными (Nh5+, NO3—). Вследствие ненасыщенности и ненаправленности ионной связи ионные кристаллы характеризуются большими координационными числами. Так, в кристаллах NaCl координационные числа ионов Na+ и Cl— равна 6, а ионов Cs+ и Cl— в кристалле CsCl — 8, поскольку один ион Cs+ окружен восемью ионами Cl—, а каждый ион — Cl — соответственно восемью ионами Cs+. Ионные кристаллические решетки образуются большим количеством солей, оксидов и оснований.

Примеры ионных кристаллических решеток: а) NaCl; б) CsCl

Вещества с ионными кристаллическими решетками имеют сравнительно высокую твердость, они достаточно тугоплавкие, нелетучие. В отличие от металлов ионные соединения очень хрупкие, поэтому даже небольшой сдвиг в кристаллической решетке приближает друг к другу одноименно заряженные ионы, отталкивания между которыми приводит к разрыву ионных связей и как следствие — к появлению в кристалле трещин или к его разрушению. В твердом состоянии вещества с ионной кристаллической решеткой относятся к диэлектрикам и не проводят электрический ток. Однако при расплавлении или растворении в полярных растворителях нарушается геометрически правильная ориентировка ионов относительно друг друга, сначала ослабляются, а затем разрушаются химические связи, поэтому меняются и свойства. Как следствие, электрический ток начинают проводить как расплавы ионных кристаллов, так и их растворы.

Атомные решетки

Эти решетки  построены из атомов, соединенных между собой ковалентной связью. Они, в свою очередь, делятся на три типа: каркасные, слоистые и цепочечные структуры.

Каркасную структуру имеет, например, алмаз — одно из самых твердых веществ. Благодаря sp3 -гибридизации атома углерода строится трехмерная решетка, которая состоит исключительно из атомов углерода, соединенных ковалентными неполярными связями, оси которых размещаются под одинаковыми валентными углами (109,5o).

Каркасная структура атомной кристаллической решетки алмаза

Слоистые структуры можно рассматривать как огромные двумерные молекулы. Для слоистых структур присущи ковалентные связи внутри каждого слоя и слабое вандерваальсовское взаимодействие между соседними слоями.

Слоистые структуры атомных кристаллических решеток: а) CuCl2 ; б) PbO. На моделях с помощью очертаний параллелепипедов выделены элементарные ячейки

Классическим примером вещества со слоистой структурой является графит, в котором каждый атом углерода находится в состоянии sp2 -гибридизации и образует в одной плоскости три ковалентные s-связи с тремя другими атомами С. Четвертые валентные электроны каждого атома углерода являются негибридизированными, за их счет образуются очень слабые вандерваальсовские связи между слоями. Поэтому при приложении даже небольшого усилия, отдельные слои легко начинают скользить друг вдоль друга. Этим объясняется, например, свойство графита писать. В отличие от алмаза графит хорошо проводит электричество: под воздействием электрического поля нелокализованные электроны могут перемещаться вдоль плоскости слоев, и, наоборот, в перпендикулярном направлении графит почти не проводит электрического тока.

Слоистая структура атомной кристаллической решетки графита

 

Цепочечные структуры характерны, например, для оксида серы (SO3)n , киновари HgS,  хлорида бериллия BeCl2, а также для многих аморфных полимеров и для некоторых силикатных материалов, таких, как асбест.

Цепная структура атомной кристаллической решетки HgS: а) проекция сбоку б) фронтальная проекция

Веществ с атомной строением кристаллических rраток сравнительно немного. Это, как правило, простые вещества, образованные элементами IIIА- и IVA-подгрупп (Si, Ge, B, C). Нередко соединения двух разных неметаллов имеют атомные решетки, например, некоторые полиморфные модификации кварца (оксид кремния SiO2 ) и карборунда (карбид кремния SiC).

Все атомные кристаллы отличаются высокой прочностью, твердостью, тугоплавкостью и нерастворимостью практически ни в одном растворителе. Такие свойства обусловлены прочностью ковалентной связи. Вещества с атомной кристаллической решеткой имеют широкий диапазон электрической проводимости от изоляторов и полупроводников до электронных проводников.

Атомные кристаллические решетки некоторых полиморфных модификации карборунда — карбида кремния SiC

Металлические решетки

Эти кристаллические решетки содержат в узлах атомы и ионы металлов, между которыми свободно движутся общие для них всех электроны (электронный газ), которые образуют металлическую связь. Особенность кристаллических решеток металлов заключается в больших координационных числах (8-12), которые свидетельствуют о значительной плотность упаковки атомов металлов. Это объясняется тем, что «остовы» атомов, лишены внешних электронов, размещаются в пространстве как шарики одинакового радиуса. Для металлов чаще всего встречаются три типа кристаллических решеток: кубическая гранецентрированная с координационным числом 12 кубическая объемноцентрированная с координационным числом 8 и гексагональная, плотной упаковки с координационным числом 12.

Особые характеристики металлического связи и металлических решеток обусловливают такие важнейшие свойства металлов, как высокие температуры плавления, электро- и теплопроводность, ковкость, пластичность, твердость.

Металлические кристаллические решетки: а) кубическая объемноцентрированная (Fe, V, Nb, Cr) б) кубическая гранецентрированная (Al, Ni, Ag, Cu, Au) в) гексагональная (Ti, Zn, Mg, Cd)

Молекулярные решетки

Молекулярные кристаллические решетки содержат в узлах молекулы, соединенные между собой слабыми межмолекулярными силами — вандерваальсовскими или водородными связями. Например, лед состоит из молекул воды, удерживающихся в кристаллической решетке водородными связями. К тому же типу относятся кристаллические решетки многих веществ, переведенных в твердое состояние, например: простые вещества Н2, О2, N2, O3, P4, S8, галогены (F2, Cl2, Br2, I2), «сухой лед» СО2, все благородные газы и большинство органических соединений.

Молекулярные кристаллические решетки: а) йод I2 ; б) лед Н2О

Поскольку силы межмолекулярного взаимодействия слабее, чем силы ковалентной или металлической связи, молекулярные кристаллы имеют небольшую твердость; они легкоплавкие и летучие, нерастворимые в воде и не проявляют электропроводности.

www.polnaja-jenciklopedija.ru

Типы кристаллических решёток — урок. Химия, 8–9 класс.

Большинство твёрдых веществ имеет кристаллическое строение, которое характеризуется строго определённым расположением частиц. Если соединить частицы условными линиями, то получится пространственный каркас, называемый кристаллической решёткой. Точки, в которых размещены частицы кристалла, называют узлами решётки. В узлах воображаемой решётки могут находиться атомы, ионы или молекулы.

 

В зависимости от природы частиц, расположенных в узлах, и характера связи между ними различают четыре типа кристаллических решёток: ионную, металлическую, атомную и молекулярную.

Ионными называют решётки, в узлах которых находятся ионы.

Их образуют вещества с ионной связью. В узлах такой решётки располагаются положительные и отрицательные ионы, связанные между собой электростатическим взаимодействием.

 

Ионные кристаллические решётки имеют соли, щёлочи, оксиды активных металлов. Ионы могут быть простые или сложные. Например, в узлах кристаллической решётки хлорида натрия находятся простые ионы натрия Na+ и хлора Cl−, а в узлах решётки сульфата калия чередуются простые ионы калия  K+ и сложные сульфат-ионы SO42−.

 

Связи между ионами в таких кристаллах прочные. Поэтому ионные вещества твёрдые, тугоплавкие, нелетучие. Такие вещества хорошо растворяются в воде.

  

 7257_001.gif

Кристаллическая решётка хлорида натрия

  

Кристалл хлорида натрия

Металлическими называют решётки, которые состоят из положительных ионов и атомов металла и свободных электронов.

Их образуют вещества с металлической связью. В узлах металлической решётки находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы, отдавая свои внешние электроны в общее пользование).

 

Такие кристаллические решётки характерны для простых веществ металлов и сплавов.

 

Температуры плавления металлов могут быть разными (от \(–37\) °С у ртути до двух-трёх тысяч градусов). Но все металлы имеют характерный металлический блеск, ковкость, пластичность, хорошо проводят электрический ток и тепло.

 

Металлическая кристаллическая решётка

  

i.jpg

Металлические изделия

Атомными называют кристаллические решётки, в узлах которых находятся отдельные атомы, соединённые ковалентными связями.

Такой тип решётки имеет алмаз — одно из аллотропных видоизменений углерода. К веществам с атомной кристаллической решёткой относятся графит, кремний, бор и германий, а также сложные вещества, например, карборунд SiC и кремнезём, кварц, горный хрусталь, песок, в состав которых входит оксид кремния(\(IV\)) SiO2.

  

Таким веществам характерны высокая прочность и твёрдость. Так, алмаз является самым твёрдым природным веществом. У веществ с атомной кристаллической решёткой очень высокие температуры плавления и кипения. Например, температура плавления кремнезёма — \(1728\) °С, а у графита она выше — \(4000\) °С. Атомные кристаллы практически нерастворимы.

 

rabota-uchienitsy-9-klassa-polimorfnyie-prievrashchieniia-siery-olova-i-zhielieza_2.png

Кристаллическая решётка алмаза

  

banner_32.jpg

Алмаз

Молекулярными  называют решётки, в узлах которых находятся молекулы, связанные слабым межмолекулярным взаимодействием.

Несмотря на то, что внутри молекул атомы соединены очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения. Поэтому молекулярные кристаллы имеют небольшую прочность и твёрдость, низкие температуры плавления и кипения. Многие молекулярные вещества при комнатной температуре представляют собой жидкости и газы. Такие вещества летучи. Например, кристаллические иод и твёрдый оксид углерода(\(IV\)) («сухой лёд») испаряются, не переходя в жидкое состояние. Некоторые молекулярные вещества имеют запах.

 

Такой тип решётки имеют простые вещества в твёрдом агрегатном состоянии: благородные газы с одноатомными молекулами  (He,Ne,Ar,Kr,Xe,Rn), а также неметаллы с двух- и многоатомными молекулами (h3,O2,N2,Cl2,I2,O3,P4,S8).

  

Молекулярную кристаллическую решётку имеют также вещества с ковалентными полярными связями: вода — лёд, твёрдые аммиак, кислоты, оксиды неметаллов. Большинство органических соединений тоже представляют собой молекулярные кристаллы (нафталин, сахар, глюкоза).

 

488482_sio2-kristallicheskaya-reshetka.jpg

Кристаллическая решётка углекислого газа

 

buz-0pykeynu.jpg

«Сухой лёд»

 

Кристаллики иода

 

Если известно строение вещества, то можно предсказать его свойства.

Попробуем определить, каковы примерно температуры плавления у фторида натрия, фтороводорода и фтора.

  

У фторида натрия — ионная кристаллическая решётка. Значит, его температура плавления будет высокой. Фтороводород и фтор имеют молекулярные кристаллические решётки. Поэтому их температуры плавления будут невысокими. Молекулы фтороводорода полярные, а фтора — неполярные. Значит, межмолекулярное взаимодействие у фтороводорода будет сильнее, и его температура плавления будет выше по сравнению со фтором.

 

Экспериментальные данные подтверждают эти предположения: температуры плавления NaF, HF и F2 составляют соответственно \(995\) °С, \(–83\) °С,  \(–220\) °С.

Источники:

Габриелян О. С. Химия. 8 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2013. — 133 с.  

 

www.yaklass.ru

Кристаллические решетки

Как мы уже знаем, вещество может существовать в трех агрегатных состояниях: газообразном, твердом и жидком. Кислород, который при обычных условиях находится в газообразном состоянии, при температуре -194° С преобразуется в жидкость голубоватого цвета, а при температуре -218,8° С превращается в снегообразную массу с кристаллами синего цвета.

Температурный интервал существования вещества в твердом состоянии определяется температурами кипения и плавления. Твердые вещества бывают кристаллическими и аморфными.

У аморфных веществ нет фиксированной температуры плавления – при нагревании они постепенно размягчаются и переходят в текучее состояние. В таком состоянии, например, находятся различные смолы, пластилин.

Кристаллические вещества отличаются закономерным расположением частиц, из которых они состоят: атомов, молекул и ионов, – в строго определенных точках пространства. Когда эти точки соединяются прямыми линиями, создается пространственный каркас, его называют кристаллической решеткой. Точки, в которых находятся частицы кристалла, называют узлами решетки.  

В узлах воображаемой нами решетки могут находиться ионы, атомы и молекулы. Эти частицы совершают колебательные движения. Когда температура увеличивается, размах этих колебаний тоже возрастает, что приводит к тепловому расширению тел.

В зависимости от разновидности частиц, находящихся в узлах кристаллической решетки, и характера связи между ними различают четыре типа кристаллических решеток: ионные, атомные, молекулярные и металлические.

Ионными называют такие кристаллические решетки, в узлах которых расположены ионы. Их образуют вещества с ионной связью, которой могут быть связаны как простые ионы Na+, Cl- , так и сложные SO24-, OH-. Таким образом, ионные кристаллические решетки имеют соли, некоторые оксиды и гидроксилы металлов, т.е. те вещества, в которых существует ионная химическая связь. Рассмотрим кристалл хлорида натрия, он состоит из положительно чередующихся ионов Na+ и отрицательных CL-, вместе они образуют решетку в виде куба. Связи между ионами в таком кристалле чрезвычайно устойчивы. Из-за этого вещества с ионной решеткой обладают сравнительно высокой прочностью и твердостью, они тугоплавки и нелетучи.

Атомными кристаллическими решетками называют такие кристаллические решетки, в узлах которых находятся отдельные атомы. В подобных решетках атомы соединяются между собой очень крепкими ковалентными связями. К примеру, алмаз – одно из аллотропных видоизменений углерода.

Вещества с атомной кристаллической решеткой не сильно распространены в природе. К ним относятся кристаллический бор, кремний и германий, а также сложные вещества, например такие, в составе которых есть оксид кремния (IV) – SiO2: кремнезем, кварц, песок, горный хрусталь.

Подавляющее большинство веществ с атомной кристаллической решеткой имеют очень высокие температуры плавления (у алмаза она превышает 3500° С), такие вещества прочны и тверды, практически не растворимы.

Молекулярными называют такие кристаллические решетки, в узлах которых расположены молекулы. Химические связи в этих молекулах могут быть также, как полярными (HCl, h30), так и неполярными (N2, O3). И хотя атомы внутри молекукл связаны очень крепкими ковалентными связями, между самими молекулами действует слабые силы межмолекулярного притяжения. Именно поэтому вещества с молекулярными кристаллическими решетками характеризуются малой твердостью, низкой температурой плавления, летучестью.

Примерами таких веществ могут послужить твердая вода – лед, твердый оксид углерода (IV) – «сухой лед», твердые хлороводород и сероводород, твердые простые вещества, образованные одно – (благородные газы), двух – (h3, O2, CL2, N2, I2), трех – (O3), четырех – (P4), восьмиатомными (S8) молекулами. Подавляющее большинство твердых органических соединений обладают молекулярными кристаллическими решетками (нафталин, глюкоза, сахар).                          

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Кристаллические решетки – himiyaklas.ru

Поговорим о твердых телах. Твердые тела можно разделить на две большие группы: аморфные и кристаллические. Разделять мы их будем по принципу есть порядок или нет.

В аморфных веществах молекулы располагаются хаотично. В их пространственном расположении нет никаких закономерностей. По сути, аморфные вещества – это очень вязкие жидкости, настолько вязкие, что твердые.

Отсюда и название: «а-» – отрицательная частица, «morphe» – форма. К аморфным веществам относятся: стекла, смолы, воск, парафин, мыло.

Отсутствие порядка в расположении частиц обусловливает физические свойства аморфных тел: они не имеют фиксированных температур плавления. По мере нагревания их вязкость постепенно снижается, и они также постепенно переходят в жидкое состояние.

В противоположность аморфным веществам существуют кристаллические. Частицы кристаллического вещества пространственно упорядочены. Это правильная структура пространственного расположения частиц в кристаллическом веществе называется кристаллической решеткой.

В отличии от аморфных тел, кристаллические вещества имеют оправленные фиксированные температуры плавления.

В зависимости от того какие частицы находятся в узлах решетки, и от того какие связи удерживают их различают: молекулярную, атомную, ионную и металлическую решетки.

Для чего принципиально важно знать, какая у вещества кристаллическая решетка? Что она определяет? Все. Структура определяет, как химические и физические свойства вещества.

Самый простой пример: ДНК. У всех организмов на земле она построена из одинакового набора структурных компонентов: нуклеотидов четырех видов. А какое многообразие жизни. Это все определяется структурой: порядком, в котором эти нуклеотиды расположены.

Молекулярная кристаллическая решетка.

Типичный пример вода – в твердом состоянии (лед). В узлах решетки находятся целые молекулы. И удерживают их вместе межмолекулярные взаимодействия: водородные связи, силы Ван-дер-Ваальса.

Связи эти слабые, поэтому молекулярная решетка – самая непрочная, температура плавления таких веществ низкая.

Хороший диагностический признак: если вещество имеет при нормальных условиях жидкое или газообразное состояние и/или имеет запах – то скорее всего у этого вещества молекулярная кристаллическая решетка. Ведь жидкое и газообразное состояния – это следствие того, что молекулы на поверхности кристалла плохо держатся (связи то слабые). И их «сдувает». Это свойство называется летучестью. А сдутые молекулы, диффундируя в воздухе доходят до наших органов обоняния, что субъективно ощущается как запах.

Молекулярную кристаллическую решетку имеют:

  1. Некоторые простые вещества неметаллов: I2, P, S (то есть все неметаллы, у которых не атомная решетка).
  2. Почти все органические вещества (кроме солей).
  3. И как уже говорилось ранее, вещества при нормальных условиях жидкие, либо газообразные (будучи замороженными) и/или имеющие запах (Nh4, O2, h3O, кислоты, CO2).
Атомная кристаллическая решетка.

В узлах атомной кристаллической решетки, в отличие от молекулярной, располагаются отдельные атомы. Получается, что удерживают решетку ковалентные связи (ведь именно они связывают нейтральные атомы).

Классический пример – эталон прочности твердости – алмаз (по химической природе – это простое вещество углерод). Связи: ковалентные неполярные, так как решетку образуют только атомы углерода.

А вот, например, в кристалле кварца (химическая формула которого SiO2) есть атомы Si и O. Поэтому связи ковалентные полярные.

Физические свойства веществ с атомной кристаллической решеткой:

  1. прочность, твердость
  2. высокие температуры плавления (тугоплавкость)
  3. нелетучие вещества
  4. нерастворимы (ни в воде, ни в других растворителях)

Все эти свойства обусловлены прочностью ковалентных связей.

Веществ в атомной кристаллической решеткой немного. Особой закономерности нет, поэтому их нужно просто запомнить:

  1. Аллотропные модификации углерода (C): алмаз, графит.
  2. Бор (B), кремний (Si), германий (Ge).
  3. Только две аллотропные модификации фосфора имеют атомную кристаллическую решетку: красный фосфор и черный фосфор. (у белого фосфора – молекулярная кристаллическая решетка).
  4. SiC – карборунд (карбид кремния).
  5. BN – нитрид бора.
  6. Кремнезем, горный хрусталь, кварц, речной песок – все эти вещества имеют состав SiO2.
  7. Корунд, рубин, сапфир – у этих веществ состав Al2O3.

Наверняка возникает вопрос: С – это и алмаз, и графит. Но они же совершенно разные: графит непрозрачный, пачкает, проводит электрический ток, а алмаз прозрачный, не пачкает и ток не проводит. Отличаются они структурой.

И то, и то – атомная решетка, но разная. Поэтому и свойства разные.

Ионная кристаллическая решетка.

Классический пример: поваренная соль: NaCl. В узлах решетки располагаются отдельные ионы: Na+ и Cl–. Удерживает решетку электростатические силы притяжения между ионами («плюс» притягивается к «минусу»), то есть ионная связь.

Ионные кристаллические решетки довольно прочные, но хрупкие, температуры плавления таких веществ довольно высокие (выше, чем у представителей металлической, но ниже чем у веществ с атомной решеткой). Многие растворимы в воде.

С определением ионной кристаллической решетки, как правило, проблем не возникает: там, где ионная связь – там ионная кристаллическая решетка. Это: все соли, оксиды металлов, щелочи (и другие основные гидроксиды).

Металлическая кристаллическая решетка.

Металлическая решетка реализуется в простых веществах металлах. Ранее мы говорили, что все великолепие металлической связи можно понять лишь вместе с металлической кристаллической решеткой. Час настал.

Главное свойство металлов: электроны на внешнем энергетическом уровне плохо удерживаются, поэтому легко отдаются. Потеряв электрон металл превращается в положительно заряженный ион – катион:

Na0 – 1e → Na+

В металлической кристаллической решетке постоянно протекают процессы отдачи, и присоединения электронов: от атома металла в одном узле решетки отрывается электрон. Образуется катион. Оторвавшийся электрон притягивается другим катионом (или этим же): вновь образуется нейтральный атом.

В узлах металлической кристаллической решетки находятся как нейтральные атомы, так и катионы металла. А между узлами путешествуют свободные электроны:

Эти свободные электроны называются электронным газом. Именно они обусловливают физические свойства простых веществ металлов:

  1. тепло- и электропроводность
  2. металлический блеск
  3. ковкость, пластичность

Это и есть металлическая связь: катионы металлов притягиваются к нейтральным атомам и все это «склеивают» склеивают свободные электроны.

P.S. Есть кое-что в школьной программе и программе ЕГЭ по этой теме то, с чем мы не совсем согласны. А именно: обобщение, о том, что любая связь металл-неметалл – это ионная связь. Это допущение, намеренно сделано, видимо, для упрощения программы. Но это ведет к искажению. Граница между ионной и ковалентной связью условная. У каждой связи есть свой процент «ионности» и «ковалентности». Связь с малоактивным металлом имеет малый процент «ионности», она больше похожа на ковалентную. Но по программе ЕГЭ, она «округляется» в сторону ионной. Это порождает, порой абсурдные вещи. Например, Al2O3 – вещество с атомной кристаллической решеткой. О какой ионности здесь может идти речь. Только ковалентная связь может удерживать таким образом атомы. Но по стандарту «металл-неметалл» мы квалифицируем эту связь как ионную. И получается противоречие: решетка атомная, а связь ионная. Вот к чему приводит, излишнее упрощение.

 

himiyaklas.ru

1.2.2. Реальное строение металлических кристаллов

Металлами называются вещества, атомы которых располага­ются в определённом геометрическом порядке, образуя при этом кристаллы. Им присущ специфический металлический блеск. Кроме того, металлы обладают хорошей пластичностью, высокой теплопроводностью и электропроводностью. Это дает возможность обрабатывать их под давлением (прокатка, ковка, штамповка, волочение). Металлы обладают хорошими литейными свой­ствами, а также свариваемостью, способны работать при низких и высоких температурах. Металлические изделия и конструкции легко соединяются с помощью болтов, заклепок и сварки. Наряду с этим металлы обладают и существенными недостатками: имеют боль­шую плотность, при действии различных газов и влаги коррози­руют, а при высоких температурах значительно деформируются.

Существует такое определение как «чистый металл» оно весьма условно. Так как любой чистый металл содержит примеси, а потому его следует рассматривать как сплав. Под термином «чистый металл» всегда понимается металл, содержащий примеси 0,01–0,001 %. Современная металлургия позволяет получать металлы высокой чистоты (99,999 %). Однако примеси даже в малых количествах могут оказывать существенное влияние на свойства металла.

Чистые металлы обладают высокой пластичностью и низкой прочностью, что не обеспечивает требуемых физико-химических и технологических свойств. Поэтому их применение в строительстве и технике в качестве конструкционных материалов сильно ограничено. Наиболее широко используют сплавы, обладающие более высокой проч­ностью, твердостью и износостойкостью и т. д.

Сплавы – это системы, состоящие из нескольких металлов или металлов и неметаллов. Так, например, прочность технического железа составляет примерно 250 МПа, при введении в железо углерода в количестве 0,9 мас. % прочность повышается до  980 МПа. Все металлы и образованные из них сплавы делят на две группы: черные и цветные [11].

К черным металлам относятся железо и сплавы на его основе – стали и чугуны, остальные металлы являются цветными. В стро­ительстве в основном применяют черные металлы – чугуны и стали для каркасов зданий, мостов, труб, кровли, арматуры в бетоне и для других металлических конструкций и изделий.

К цветным металлам относятся все металлы и сплавы на осно­ве алюминия, меди, цинка, титана. Цветные металлы являются более дорогостоящими и дефицитными.

Чугун получают в ходе доменного процесса, основанного на восстановлении железа из его природных оксидов коксом при высокой температуре. Процесс восстановления железа оксидом углерода в верхней части доменной печи можно представить по обобщенной схеме: Fe2O3 > Fe3O4 > >FeO > Fe. Опускаясь в нижнюю часть печи, расплавленное железо соприкасается с коксом и пре­вращается в чугун.

Чугуны в зависимости от состава и структуры подразделяются на серые (углерод в виде цементита и свободного графита) и бе­лые (углерод в виде цементита). В зависимости от формы графита и условий его образования различают: серый, высокопрочный и ковкий чугуны.

Стали можно подразделить на две основные группы – углеродистые и легированные (рис. 1).

Углеродистые стали – основной конструкционный материал, который используется в различных областях промышленности. Они дешевле легированных и проще в производстве. В углеродистой стали свойства зависят от количества углерода, поэтому эти стали классифицируются на низкоуглеродистые, средне- и высокоугле­родистые.

Легированные стали содержат специально вводимые элементы для получения заданных свойств. По степенилегированости стали подразделяются на низколегированные, средне- и высоколегиро­ванные.

Классификация сталей по качеству основывается на содержа­нии вредных примесей серы и фосфора. Различают углеродистую сталь обыкновенного качества, сталь качественную конструкци­онную и сталь высококачественную.

По назначению стали подразделяются на три группы: конструк­ционные, инструментальные и с особыми свойствами. Конструк­ционные углеродистые стали содержат углерод в количестве 0,02 – 0,7 мас.%, к ним относятся и строительные стали, содержащие до 0,3 мас.% углерода. Низкое содержание углерода обусловлено тем, что строительные конструкции соединяются сваркой, а углерод ухуд­шает свариваемость. Стали, содержащие углерод в пределах 0,7 – 1,5 мас.%, используют для изготовления режущего и ударного инст­румента. К группе сталей и сплавов с особыми свойствами отно­сятся коррозионностойкие, нержавеющие и кислотоупорные, жа­ропрочные и жаростойкие стали и т. д.

 Основные типы кристаллических решеток

 

Строение кристаллической решетки описывается элементарной ячейкой. Элементарная ячейка – это наименьший  объем кристалла, дающий представление о строении всего кристалла. Характеристики ячейки – ребра a,b, c и углы между ними α, β, γ; отрезки a, b, c называются периодами решетки.

 

В металлах атомы располагаются в строгом порядке, как атомы в плоскости образуют атомную сетку, а в пространстве – атомнокристаллическую решетку (рис. 2). Линии на этих схемах являются услов­ными; в действительности никаких линий не существует, а атомы колеблются возле точек равновесия, т. е. узлов решетки  с большой частотой.

Типы кристаллических решеток различны. Наиболее часто встречаются следующие решетки: кубическая объемно-центрированная, кубическая гранецентрированная и гексагональ­ная плотноупакованная.

Элементарные ячейки таких кристаллических решеток приве­дены на рис. 3. В ячейке кубической объемно-центрированной решетки атомы расположены в вершинах куба и в её центре; такую решетку имеют хром, ванадий, вольфрам, молибден и др. В ячейке кубической гранецентрированной решетки атомы расположены в вер­шинах и в центре каждой грани куба; такой решеткой обладают алю­миний, никель, медь, свинец и др.

 

 

Рис. 3. Элементарные ячейки кристаллических решеток: а – кубическая объемно-центрированная; б – кубическая гранецентрированная; в – гексагональная 

В ячейке гексагональной решетки  атомы расположены в вершинах шестиугольных оснований призмы, в центре этих оснований и внутри призмы; гексагональную решетку имеют магний, титан, цинк и др. В реальном металле кристалли­ческая решетка состоит из огромного количества ячеек.

 

 

Необходимо знать, что порядок в расположении ато­мов (упаковка) имеется не по всему объему кри­сталла (кристаллической решетки).  В реальности кристаллы в структуре металла имеют структурные несовершенства: точечные, линейные иповерхностные.

 

     Точечные несовершенства – это дефекты, которые в трёх пространственных измерениях (X, Y, Z) малы, при этом их размеры не превышают нескольких атомных диаметров.       Известно, что атомы находятся в колебательном движении, чем выше температура, тем больше амплитуда этих колебаний. Большинство атомов металла в кристаллической решетке обладает одинаковой (средней)энергией и колеблется с одина­ковой амплитудой, а отдельные атомы имеют энергию, значи­тельно превышающую сред­нюю энергию. Такие атомыобладают не только большей амплитудой колебаний, но и способны перемещаться из одного места расположения в другое. Как правило, наиболее легко передвигаются атомы поверхностного слоя, выходя на поверхность (на­пример, атом 1, рис. 4,а). Участок, где находился такой атом (свободный узел), назы­вается вакансией, которая не остается свободной. Через некоторое время в нее перемещается один из соседних атомов из более глубокого слоя (например, атом 2, рис. 4,б), а поки­нутый им узел также становится  вакансией; затем перемещается, например, атом 3 (рис. 4,в) и т. д. Таким образом, вакансия пере­ме­щает­­ся в глубь кристалла. Как видно из рис. 4,г,вакансия искажает кристаллическую решетку. Количество вакан­сий увеличивается с повышением температуры, и они чаще переходят из одного узла в другой. Вакансии играют основную роль в диффузионных процессах, протекающих в металлах.

Точечные несовершенства появляются и как результат присутствия атомов примесей. Атомы примесей или замещают атомы основного металла в кристалле решетки, или располагаются внутри кристаллической решетки искажая её.

Линейные несовершенства называются дислокациями. Они имеют малые размеры в двух измерениях и большую протяженность в третьем. Имеются различные виды дислокаций, одной из которых является краевая (линейная) дислокация. 

В идеальном кристалле происходит сдвиг на одно межатомное расстояние одной части кристалла относительно другой, вдоль ка­кой-либо атомной плоскости на участке ADEF (рис. 5,а). Как видно, влево сдвинулась только часть кристалла, находящаяся правее плоскости ABCD. При таком сдвиге число рядов ато­мов в верхней части кристал­ла на один больше, чем в ниж­ней (рис. 5,б). Плоскость ABCD (рис. 5,а) представ­ляет собой в данном случае как бы лишнюю атомную пло­скость (называемую экстра-плоскостью), вставленную в верхнюю часть кристалла (АВ, рис. 5,б). Линия AD (рис. 5,а), перпендикулярная направлению сдвига, являющаяся краемэкстраплоскости, назы­вается краевой или линейной дислокацией, длина которой может достигать многих тысяч межатомных расстояний.

Особым свойством дислокаций является их подвижность. Объясняется это тем, что кристаллическая решетка в зоне дисло­каций упруго искажена, атомы в этой зоне смещены относительно их равновесного положения в кристаллической решетке и поэтому атомы, образующие дислокацию, стремятся переместиться в равно­весное положение. 

Необходимо знать, что дислокации рождаются в процессе кри­стал­ли­зации, пластической деформации, термической обра­ботки и т.д.

 

Они присутствуют в металлических кристаллах в огромном количестве (106–1012 см-2). Большое влияние на механические и многие другие свойства металлов и сплавов оказывают не только плотность, но и расположение дислокаций в объёме.

Поверхностными несовершенствами яв­ляются границы зерен и блоков металла. Они малы только в одном измерении. На границе между зер­нами атомы имеют менее правильное расположение, чем в объеме зерна. Зернаразориентированы, повернуты друг относительно друга на несколько градусов. По границам зерен скапливаютсядислокации и вакансии. Зерно состоит из большого числа разориентированных на очень небольшие углы (десятые доли градусов) областей, называемых субзернами или блоками (рис. 6). Границы блоков представляют собой дислокации, разделяющие зерно на блоки.

 

studfiles.net

Кристаллическое строение металлов. Кристаллическая решетка металлов

Одним из самых распространенных материалов, с которым всегда предпочитали работать люди, был металл. В каждую эпоху предпочтение отдавалось разным видам этих удивительных веществ. Так, IV-III тысячелетия до нашей эры считаются веком хальколита, или медным. Позже его сменяет бронзовый, а затем в силу вступает тот, что и по сей день является актуальным - железный.

Сегодня вообще сложно представить, что когда-то можно было обходиться без металлических изделий, ведь практически все, начиная от предметов быта, медицинских инструментов и заканчивая тяжелой и легкой техникой, состоит из этого материала или включает в свой состав отдельные части из него. Почему же металлы сумели завоевать такую популярность? В чем проявляются особенности и как это заложено в их строении, попробуем разобраться далее.

кристаллическое строение металлов

Общее понятие о металлах

"Химия. 9 класс" - это учебник, по которому проходят обучение школьники. Именно в нем подробно изучаются металлы. Рассмотрению их физических и химических свойств отведена большая глава, ведь разнообразие их чрезвычайно велико.

Именно с этого возраста рекомендуют давать детям представление о данных атомах и их свойствах, ведь подростки уже вполне могут оценить значение подобных знаний. Они прекрасно видят, что окружающее их разнообразие предметов, машин и прочих вещей имеет в своей основе как раз металлическую природу.

Что же такое металл? С точки зрения химии, к данным атомам принято относить те, что имеют:

  • малое число электронов на внешнем уровне;
  • проявляют сильные восстановительные свойства;
  • имеют большой атомный радиус;
  • как простые вещества обладают рядом специфических физических свойств.

Основу знаний об этих веществах можно получить, если рассмотреть атомно-кристаллическое строение металлов. Именно оно объясняет все особенности и свойства данных соединений.

В периодической системе для металлов отводится большая часть всей таблицы, ведь они образуют все побочные подгруппы и главные с первой по третью группу. Поэтому их численное превосходство очевидно. Самыми распространенными являются:

  • кальций;
  • натрий;
  • титан;
  • железо;
  • магний;
  • алюминий;
  • калий.

Все металлы имеют ряд свойств, которые позволяют объединять их в одну большую группу веществ. В свою очередь, эти свойства объясняет именно кристаллическое строение металлов.

атомно кристаллическое строение металлов

Свойства металлов

К специфическим свойствам рассматриваемых веществ относят следующие.

  1. Металлический блеск. Все представители простых веществ им обладают, причем большинство одинаковым серебристо-белым цветом. Лишь некоторые (золото, медь, сплавы) отличаются.
  2. Ковкость и пластичность - способность деформироваться и восстанавливаться достаточно легко. У разных представителей выражена в неодинаковой мере.
  3. Электропроводность и теплопроводность - одно из основных свойств, которое определяет области применения металла и его сплавов.

Кристаллическое строение металлов и сплавов объясняет причину каждого из обозначенных свойств и говорит о выраженности их у каждого конкретного представителя. Если знать особенности такого строения, то можно влиять на свойства образца и подстраивать его под нужные параметры, что и делают люди уже многие десятилетия.

химия 9 класс

Атомно-кристаллическое строение металлов

В чем же заключается такое строение, чем характеризуется? Само название говорит о том, что все металлы представляют собой кристаллы в твердом состоянии, то есть при обычных условиях (кроме ртути, которая является жидкостью). А что такое кристалл?

Это условное графическое изображение, построенное путем пересечения воображаемых линий через атомы, которые выстраивают тело. Другими словами, каждый металл состоит из атомов. Они располагаются в нем не хаотично, а очень правильно и последовательно. Так вот, если мысленно соединить все эти частицы в одну структуру, то получится красивое изображение в виде правильного геометрического тела какой-либо формы.

Это и принято называть кристаллической решеткой металла. Она очень сложная и пространственно объемная, поэтому для упрощения показывают не всю ее, а лишь часть, элементарную ячейку. Совокупность таких ячеек, собранная вместе и отраженная в трехмерном пространстве, и образует кристаллические решетки. Химия, физика и металловедение - это науки, которые занимаются изучением особенностей строения таких структур.

кристаллические решетки химия

Сама элементарная ячейка - это набор атомов, которые располагаются на определенном расстоянии друг от друга и координируют вокруг себя строго фиксированное число других частиц. Она характеризуется плотностью упаковки, расстоянием между составными структурами, координационным числом. В целом все эти параметры являются характеристикой и всего кристалла, а значит, отражают и проявляемые металлом свойства.

Существует несколько разновидностей кристаллических решеток. Объединяет их все одна особенность - в узлах находятся атомы, а внутри располагается облако электронного газа, которое формируется путем свободного передвижения электронов внутри кристалла.

Типы кристаллических решеток

Четырнадцать вариантов строения решетки принято объединять в три основных типа. Они следующие:

  1. Объемно-центрированная кубическая.
  2. Гексагональная плотноупакованная.
  3. Гранецентрированная кубическая.

Кристаллическое строение металлов было изучено только благодаря электронной микроскопии, когда стало возможным получать большие увеличения изображений. А классификацию типов решеток впервые привел французский ученый Браве, по фамилии которого их иногда называют.

строение кристаллической решетки металлов

Объемно-центрированная решетка

Строение кристаллической решетки металлов данного типа представляет собой следующую структуру. Это куб, в узлах которого находится восемь атомов. Еще один располагается в центре свободного внутреннего пространства ячейки, что и объясняет название "объемно-центрированная".

Это один из вариантов наиболее простого строения элементарной ячейки, а значит, и всей решетки в целом. Такой тип имеют следующие металлы:

  • молибден;
  • ванадий;
  • хром;
  • марганец;
  • альфа-железо;
  • бетта-железо и другие.

Основные свойства таких представителей - высокая степень ковкости и пластичности, твердость и прочность.

Гранецентрированная решетка

Кристаллическое строение металлов, имеющих гранецентрированную кубическую решетку, представляет собой следующую структуру. Это куб, который включает в свой состав четырнадцать атомов. Восемь из них формируют узлы решетки, а еще шесть расположены по одному на каждой грани.

Подобную структуру имеют:

  • алюминий;
  • никель;
  • свинец;
  • гамма-железо;
  • медь.

Основные отличительные свойства - блеск разного цвета, легкость, прочность, ковкость, повышенная устойчивость к коррозии.

дефекты кристаллического строения металлов

Гексагональная решетка

Кристаллическое строение металлов, обладающих данным типом решетки, следующее. В основе элементарной ячейки лежит шестигранная призма. В ее узлах располагается 12 атомов, еще два по основаниям и три атома свободно лежат внутри пространства в центре структуры. Всего семнадцать атомов.

Подобную сложную конфигурацию имеют такие металлы, как:

  • альфа-титан;
  • магний;
  • альфа-кобальт;
  • цинк.

Основные свойства - высокая степень прочности, сильный серебристый блеск.

Дефекты кристаллического строения металлов

Однако все рассмотренные типы ячеек могут иметь и естественные недостатки, или так называемые дефекты. Это может быть связано с разными причинами: посторонними атомами и примесями в металлах, внешними воздействиями и прочим.

Поэтому существует классификация, отражающая дефекты, которые могут иметь кристаллические решетки. Химия как наука изучает каждый из них с целью выявления причины и способа устранения, чтобы свойства материала не были изменены. Итак, дефекты следующие.

  1. Точечные. Они бывают трех основных видов: вакансии, примеси или дислоцированные атомы. Приводят к ухудшению магнитных свойств металла, электро- и теплопроводности его.
  2. Линейные, или дислокационные. Выделяют краевые и винтовые. Ухудшают прочность и качество материала.
  3. Поверхностные дефекты. Влияют на внешний вид и структуру металлов.

В настоящее время разработаны методики устранения дефектов и получения чистых кристаллов. Однако совсем искоренить их не удается, идеальной кристаллической решетки не существует.

кристаллическое строение металлов и сплавов

Значение знаний о кристаллическом строении металлов

Из вышеизложенного материала очевидно, что знания о тонкой структуре и строении позволяют спрогнозировать свойства материала и повлиять на них. И это позволяет делать наука химия. 9 класс общеобразовательной школы делает в процессе обучения упор на то, чтобы сформировать у учащихся четкое понятие о важном значении основополагающей логической цепочки: состав - строение - свойства - применение.

Сведения о кристаллическом строении металлов очень четко иллюстрирует эту зависимость и позволяет учителю наглядно объяснить и показать детям, насколько важно знать тонкую структуру, чтобы правильно и грамотно использовать все свойства.

fb.ru

ОПРЕДЕЛЕНИЕ КРИСТАЛЛИЧЕСКИХ РЕШЕТОК - Аморфные и кристаллические вещества

Точки, в которых размещены частицы, называются узлами кристаллической решетки. Объяснялась зависимость физических и химических свойств от разных типов кристаллических решеток в веществе.

Кристалли́ческая решётка — вспомогательный геометрический образ, вводимый для анализа строения кристалла. Решётка имеет сходство с канвой или сеткой, что даёт основание называть точки решётки узлами. Решёткой является совокупность точек, которые возникают из отдельной произвольно выбранной точки кристалла под действием группы трансляции.

Применение к решётке в целом любой из присущих ей трансляций приводит к её параллельному переносу и совмещению. Для удобства анализа обычно точки решётки совмещают с центрами каких-либо атомов из числа входящих в кристалл, либо с элементами симметрии. В данном параграфе рассмотрим кристаллические вещества, т.е. вещества, находящиеся в твёрдом состоянии.

Кристаллическая решётка

Рассмотрим каждую из решёток в отдельности и поподробней. Ионные кристаллические решётки имеют соли, некоторые оксиды и гидроксиды металлов. Рассмотрим строение кристалла поваренной соли, в узлах которого находятся ионы хлора и натрия. Связи между ионами в кристалле очень прочные и устойчивые.Поэтому вещества с ионной решёткой обладают высокой твёрдостью и прочностью, тугоплавки и нелетучи.

Химические связи в них ковалентные, как полярные, так и неполярные. Твердые вещества, как правило, имеют кристаллическое строение. Кристаллические решетки, состоящие из ионов, называются ионными. Поэтому вещества с ионной решеткой обладают сравнительно высокой твердостью. Атомы в таких решетках соединены между собой прочными ковалентными связями.

Презентация к уроку

Координационное число углерода в алмазе 4 . В решетке алмаза, как и в решетке хлорида натрия, молекулы отсутствуют. Атомная кристаллическая решетка характерна для твердого бора, кремния, германия и соединений некоторых элементов с углеродом и кремнием. Кристаллические решетки, состоящие из молекул (полярных и неполярных), называются молекулярными. Молекулы в таких решетках соединены между собой сравнительно слабыми межмолекулярными силами.

В химические взаимодействия вступают не отдельные атомы или молекулы, а вещества. Самым твёрдым веществом в природе является алмаз. Он считается царём всех самоцветов и драгоценных камней. При низких температурах, когда тепловое движение затруднено, частицы строго ориентируются в пространстве и образуют кристаллическую решётку. В самой кристаллической решетке различают узлы и межузловое пространство. Четвёртая разновидность кристаллического углерода «лонсдейлит» мало кому известна.

Андрей Ф., онлайн репетитор по химии написал(a) 19.02.2012

Однако теперь стало известно, что это тоже кристаллические вещества. Простые вещества остальных элементов имеют металлическую кристаллическую решётку. Ионная решётка — состоит из ионов противоположного знака, которые чередуются в узлах. Вещества с таким типом решётки обладают высокой температурой плавления.

На уроке рассмотрены типы кристаллических решеток, типы агрегатных состояний вещества, твердые тела с кристаллической структурой

Атомная решётка — состоит из атомов, связанных ковалентной или металлической связью. Характерна для алмаза и металлов. Молекулярная решётка — узлы образуют молекулы. Вещества с таким типом решетки летучи, легкоплавки, обладают низкой твердостью, обычно являются диэлектриками. При низких температурах и высоком давлении все вещества существуют в твёрдом агрегатном состоянии.

В зависимости от степени упорядоченности частиц в твердых телах определяют 2 фазовых состояния: кристаллическое и аморфное. В кристаллическом теле существует и ближний, и дальний порядок. Если мысленно соединить точки, обозначающие линии, получится пространственный каркас, который называется кристаллической решеткой.

Это объясняется различным составом вещества или различием в их кристаллической решетке. Изучением строения кристаллических решеток разных веществ занимается наука кристаллография. Как мы уже знаем, вещество может существовать в трех агрегатных состояниях: газообразном, твердом и жидком. Температурный интервал существования вещества в твердом состоянии определяется температурами кипения и плавления. У аморфных веществ нет фиксированной температуры плавления – при нагревании они постепенно размягчаются и переходят в текучее состояние.

Они образуют кристаллические решётки.Кристаллические решётки веществ-это упорядоченное расположение частиц(атомов, молекул, ионов) в строго определённых точках пространства

Когда эти точки соединяются прямыми линиями, создается пространственный каркас, его называют кристаллической решеткой. К ним относятся кристаллический бор, кремний и германий, а также сложные вещества, например такие, в составе которых есть оксид кремния (IV) – SiO2: кремнезем, кварц, песок, горный хрусталь.

Именно поэтому вещества с молекулярными кристаллическими решетками характеризуются малой твердостью, низкой температурой плавления, летучестью. В настоящее время выделено уже более тысячи структурных типов, однако они охватывают лишь несколько процентов известных кристаллических структур.

Обычно структурный тип относят к названию одного из веществ, кристаллизующихся в нём. Структуры кристаллов, принадлежащих к одному структурному типу, одинаковы до подобия. Атомы располагаются в вершинах и центрах граней F -ячейки. Кристалл — это тело, частицы которого (атомы, ионы, молекулы) располагаются не в хаотичном, а в строго определенном порядке.

Молекулярными называют такие кристаллические решетки, в узлах которых расположены молекулы. Ионными называют кристаллические решетки, в узлах которых находятся ионы. Их образуют вещества с ионной связью. Взаимосвязь между положениемэлемента в Периодической системе и кристаллической решёткой его простого вещества. Принято считать, что существует четыре типа кристаллических решеток: металлические, ионные, атомные и молекулярные.

Еще интересное:

labudnu.ru