Процент армирования железобетонных конструкций – минимальный и максимальный. Переармирование бетона


Процент армирования железобетонных конструкций: минимальный и максимальный

Арматурный каркас является необходимой частью в железобетонных конструкциях. Цель его использования — усиление и повышение прочности бетонных изделий. Арматурный каркас изготавливается из стальных прутьев или готовой металлической сетки. Необходимое количество усиления рассчитывается с учетом возможных нагрузок и воздействий на изделие. Расчетная арматура называется рабочей. При укреплении в конструктивных или технологических целях производится монтажное армирование. Чаще используются оба типа для обеспечения более равномерного распределения усилий между отдельными элементами арматурного каркаса. Арматура выдерживает нагрузку от усадки, колебаний температур и прочих воздействий.

Армирование бетона

Прочность на излом, повышенная надежность являются основными характеристиками, которым наделяется железобетонная конструкция при армировании. Стальной каркас многократно усиливает выносливость материала, расширяя область его применения. Горячекатаная сталь используется для армирования в железобетоне. Она наделена максимальной стойкостью к негативным воздействиям и коррозии.

Сваренный скелет из арматуры размещается внутри бетона. Однако недостаточно просто поместить его туда. Чтобы армирование выполняло свое назначение, требуются специальный расчет усиления бетона, соответствующий минимальному и максимальному проценту.

Вернуться к оглавлению

Минимальный армирующий процент

Расчетная схема нормального сечения железобетонного элемента с внешним армированием.

Под предельно минимальным армирующим процентом принято понимать степень преобразования бетона в железобетон. Недостаточная величина этого параметра не дает права считать изделие усиленным до ЖБИ. Это будет простым упрочнением конструкционного типа. Площади сечения бетонного изделия учитываются в минимальном проценте усиления при использовании продольного армирования в обязательном порядке:

  1. Усиление прутьями будет соответствовать 0,05 процентам от площади разреза изделия из бетона. Это актуально для объектов с внецентренно изгибаемыми и растянутыми нагрузками, когда оказывается продольное давление за пределами действительной высоты.
  2. Армирование прутьями равно не менее 0,06 процентам, когда давление во внецентренно растянутых изделиях осуществляется на пространство между армирующими прутьями.
  3. Упрочнение будет составлять 0,1—0,25 процента, если железобетонные материалы усиливаются во внецентренно сжатых частях, то есть между арматурами.

При расположении продольного усиления по периметру сечения, то есть равномерно, степень армирования должна равняться величинам, вдвое большим указанных для всех перечисленных выше случаев. Это правило аналогично и для усиления центрально-растянутых изделий.

Вернуться к оглавлению

Максимальный армирующий процент

При армировании нельзя укреплять бетонную конструкцию слишком большим количеством прутьев. Это приведет к существенному ухудшению технических показателей железобетонного материала. ГОСТ предлагает определенные нормативы максимального процента армирования.

Максимально допустимая величина усиления, вне зависимости от марки бетона и типа арматуры, не должна превышать пяти процентов. Речь идет о расположении в разрез сечения изделия с колоннами. Для других изделий допускается максимально четыре процента. При заливке арматурного каркаса, бетонный раствор должен проходить сквозь каждый отдельный конструкционный элемент.

Вернуться к оглавлению

Защитный слой бетона

Армирование элементов монолитных железобетонных зданий.

Для защиты арматуры от коррозии, влаги и прочих неблагоприятных внешний воздействий, бетон должен полностью покрывать стальной каркас. Толщина бетонного пласта над металлическим скелетом в монолитных стенах более 10 см должна составлять максимально 1,5 см. Для плит толщиной до 10 см величина слоя составляет 1 см. Если речь идет о 25-сантиметровых ребрах, слой бетона должен достигать 2 см. При армировании балок до 25 см пласт цементного раствора равен 1,5 см, но для балок в фундаментах — 3 см. Для колонн стандартных размеров следует заливать бетон слоем более 2 см.

Что касается фундаментов, то для монолитных конструкций с прослойкой из цемента требуемая толщина слоя над арматурным каркасом составляет 3,5 см. При обустройстве сборных основ — 3 см. Монолитные базы без подушки требуют 7-сантиметровый слой бетона над скелетом из арматуры. При использовании толстых защитных слоев бетона рекомендуется проводить дополнительное усиление. Для этого используется стальная проволока, вязанная в виде сетки.

При дальнейшей обработке железобетонных конструкций алмазными кругами важно учитывать расположение каждого армирующего элемента и структуру его скелета. Это особенно касается процессов сверления отверстий в железобетоне и его резки. Такая обработка материалов может снизить потенциальную прочность изделия. Когда железобетон демонтируется полностью, учет перечисленных выше требований не производится.

Вернуться к оглавлению

Заключение

Индивидуальное строительство немыслимо без использования бетонных растворов. Для повышения надежности и прочности возводимых конструкций армирование является важным условием.

При наличии базовых знаний и опытных помощников усиление бетонных объектов не составит труда. В этом деле важно выполнять требования и следовать правилам расположения арматуры. Только так можно получить гарантированно долговечные и надежные железобетонные конструкции.

kladembeton.ru

Процент армирования железобетонных конструкций – минимальный и максимальный

Архив рассылки "Непрошеные советы" для начинающих проектировщиков. Выпуск № 14.

Здравствуйте!

В очередном выпуске непрошенных советов я хочу поговорить о проценте армирования в железобетонных конструкциях.

Обычно, чтобы не попасть впросак, начинающие проектировщики стараются свериться с данными по допустимому проценту армирования железобетона. С минимальным процентом все просто: есть таблица 47 (38) в Пособии по проектированию бетонных и железобетонных конструкций из тяжелого бетона плюс важные примечания под этой таблицей – этих данных достаточно, чтобы недоармирования не произошло.

Но что же делать с переармированием? Ведь нигде не пишется, какой максимум арматуры может быть в бетоне. Разобраться с этим вопросом поможет здравый смысл и требования по конструированию, с них мы и начнем.

Чтобы конструкция была надежной не только на бумаге, нужно расположить арматуру так, чтобы бетонирование было качественным. Для этого нужно всегда соблюдать требования по минимальному расстоянию между стержнями арматуры (см. п.п. 5.38 – 5.41 того же пособия). Только тогда бетон надежно заполнит пространство между стержнями, сцепление с арматурой будет надежным, а конструкция – прочной. Также нужно обращать особое внимание на расположение стержней в местах нахлестки, т.к. арматуры там в два раза больше, и ее нужно расположить так, чтобы выполнялось требование по минимальному расстоянию в свету между стержнями (50 мм – для монолитных колонн, например). Не лишним также будет обращать внимание на реальный диаметр стержней периодической арматуры (с учетом выступов и ребер), особенно в стесненных условиях. Выполняя эти конструктивные требования, вы сделаете первый шаг к тому, чтобы не переармировать конструкцию.

Второй шаг – это учет расположения арматуры в расчете. На первый взгляд, можно разогнаться и уложить арматуру в несколько рядов – сечение по расчету проходит, почему бы не попробовать? Этот соблазн особенно для тех, кто считает в программах и не чувствует зависимости результатов расчета от расположения арматуры в сечении. Да, в балках руководство по конструированию допускает расположение арматуры в несколько рядов (см. рисунок 84), в колоннах – не рекомендуется.

Расположение арматуры

Из рисунка мы видим, что процент армирования в балке можно значительно увеличить. Но при этом, как всегда, всплывает одно «но»: рабочая высота сечения h0, которая имеет большое значение при определении итогового армирования для каждого последующего ряда арматуры значительно уменьшается. И это оказывает прямое влияние на искомую площадь арматуры, т.к. она пропорциональна рабочей высоте сечения: As=(ξbh0Rb)/Rs+As' (формула 25 Пособия по проектированию бетонных и железобетонных конструкций к СНиП 2.03.01-84).

Поэтому всегда советую обращать внимание при расчете балок на то, в сколько рядов в итоге будет уложена арматура. Если в начале предполагался один ряд и h0 была соответствующей, а в итоге арматуры получилось столько, что в один ряд она не поместится, то нужно обязательно пересчитать армирование с уточнением рабочей высоты сечения – очень часто это дает увеличение площади арматуры.

Еще из рисунка видны четкие требования к расстоянию в свету между стержнями арматуры. Это обусловлено тем, что заполнитель в бетоне – щебень разных фракций, и густо расположенная арматура не должна помешать качественному бетонированию. Всегда нужно обращать внимание на это требование, чтобы не попасть впросак.

В итоге, по балкам мы имеем как минимум два ограничивающих процент армирования требования: расстояние между стержнями и рабочая высота сечения арматуры (т.е. ограничения в самом расчете). И если соблюдать эти требования, переармировать конструкцию будет не возможно.

В Руководстве по конструированию, на которое я уже не раз ссылалась, Вы найдете конструктивные требования к расположению арматуры в любых типах железобетонных конструкций. Если их тщательно соблюдать, Ваши конструкции всегда будут заармированы, как следует, и о проценте армирования беспокоиться будет не нужно.

Удачного Вам освоения нашей непростой профессии!

С уважением, Ирина.

class="eliadunit">
Добавить комментарий

svoydom.net.ua

Армирование железобетонных конструкций по ГОСТу: правила

Самостоятельное строительство уже давно перестало быть чем-то из ряда вон выходящим: при наличии необходимых знаний, навыков и помощников – это вполне осуществимо. Строительные работы редко обходятся без заливки бетона, который в большинстве своем, должен содержать в себе определенное количество армирующих элементов. Надежность и долговечность бетонного объекта может гарантировать только армирование железобетонных конструкций по ГОСТу.

Конечно, самостоятельная заливка железобетонных объектов под строительство многоэтажного дома или другого подобного сооружения не представляется возможным, так как такие масштабы требуют промышленного подхода. В данном случае мы рассмотрим лишь случаи, которые могут возникнуть в частной практике, где вы вполне можно обойтись своими силами.

Усиление фундамента под силу выполнить своими руками

Усиление фундамента под силу выполнить своими руками

В данной статье будут приведены правила армирования железобетонных конструкций, которые применяются в частном строительстве.

Армирование бетона

Заливка монолитной плиты с усилительным каркасом: фото

Заливка монолитной плиты с усилительным каркасом: фото

Армирование необходимо для повышения прочностного потенциала бетона – железобетон во много раз превосходит обыкновенный аналог по прочности на излом. Повышенную надежность обеспечивает металлический каркас, сваренный из арматуры, который располагается в толще бетона. Он играет роль скелета, который многократно усиливает выносливость объекта (узнайте здесь, как происходит армирование газобетона).

В современном строительстве применение железобетона является стандартом де-факто, несмотря на то, что его цена на порядок выше обычного аналога. Однако наличие арматуры не превращают бетон в железобетон. Иногда в опалубку просто погружаются сваренный наугад каркас, который затем заливается раствором – некоторые строители по ошибке могут назвать это железобетоном, но это заявление ошибочно.

Минимальный процент усиления

Чтобы превратить обычный бетон в железобетон, недостаточно просто заложить в него металлический каркас. Существует такое понятие как минимальный процент армирования железобетонных конструкций, посредством которого определяется степень перехода одного состояния в другое. Если процент вхождения металлических элементов окажется меньше необходимого, то данное изделие относится к бетонным наименованиям.

Обратите внимание! Данный раздел основывается на пункте 5.16 СНиП 2.03.01-84 “Бетонные и железобетонные конструкции”

Готовый каркас и металлического прута

Готовый каркас и металлического прута

Если количество металлических составляющих будет меньше необходимого, то такой тип усиления считается конструкционным укреплением – при этом изделие не становится железобетоном.

Минимальный процент усиления объекта продольной арматурой рассчитывается исходя из площади сечения бетонного элемента.

  • Во внецентренно растянутых и изгибаемых объектах, в том случае если продольная сила располагается вне пределов рабочей высоты сечения, усиление должно составлять не менее 0,05% (арматура S) от площади сечения бетонного элемента;
  • Во внецентренно растянутых объектах, где продольная сила располагается между арматурами S и S”, усиление должно составлять не менее 0,06% (арматура S и S”) от площади сечения бетонного элемента;
  • Во внецентренно сжатых объектах минимальный процент вхождения металлических элементов составляет от 0,1 до 0,25% (арматура S и S”).

Обратите внимание! Если продольное усиление располагается по контуру сечения (равномерно), то площадь сечения арматуры должна составлять вдвое больше указанных величин. Это также относится к центрально-растянутым объектам.

Максимальный процент усиления

Сборка каркаса перед заливкой

Сборка каркаса перед заливкой

В бетонных работах инструкция – «чем больше, тем лучше» – неуместна.

Чрезмерное количество металлических составляющих существенно ухудшит технические характеристики изделия.

Как и в предыдущем случае, здесь также имеются нормативы.

  • Независимо от класса бетона и усилительных элементов, наибольший процент вхождения арматуры в сечение изделия не должен превышать 5% в случае с колоннами и 4% во всех остальных случаях. При этом бетонный раствор должен эффективно просачиваться между деталями усилительного каркаса;

Обратите внимание! В обоих случаях, в качестве усилительных элементов подразумевается горячекатаная сталь для армирования железобетонных конструкций.

Защитный слой бетона

Схема Ж/б в разрезе

Схема Ж/б в разрезе

Усилительный каркас должен покрываться защитным слоем бетона, который обеспечивает совместную работу бетона и металлического скелета. Также он защищает металл от коррозии и воздействия окружающей среды (см.также статью «Защита бетона от влаги: способы и применяемые материалы»).

Толщина слоя над металлическим каркасом составляющими должна составлять.

В стенках и плитах (толщиной мм) не менее:

  • Свыше 100 мм – 15 мм;
  • До 100 мм и включительно – 10 мм;

В ребрах и балках:

  • Свыше 250 мм – 20 мм;
  • До 250 и включительно – 15 мм;

В фундаментных балках:

В колоннах:

Обратите внимание! Если защитный слой будет иметь большее значение, то для дополнительного укрепления используется проволока для армирования железобетонных конструкций, которая перекроет излишек.

Укрепление лестничного пролета

Укрепление лестничного пролета

В фундаментах:

  • Монолитных с цементной подушкой – 35 мм;
  • Сборных – 30 мм
  • Монолитных без цементной подушки – 70 мм;

Обратите внимание! Данный раздел составлен в соответствии с пунктом 5.5 СНиП 2.03.01-84 “Бетонные и железобетонные конструкции”

Также следует отметить, что алмазное бурение отверстий в бетоне или резка железобетона алмазными кругами должна учитывать расположение и структуру усилительного каркаса. Отделение частей или сквозные отверстия могут существенно снизить потенциал прочности объекта. Если же речь идет о полном демонтаже объекта, то данное обстоятельство учитывать нет необходимости.

Итог

Соблюдение норм и стандартов будет надежной гарантией долговечности и надежности железобетонных конструкций. Более подробную информацию по данной теме вы можете получить посредством просмотра видео в этой статье (узнайте также как осуществляется прогрев бетона сварочным аппаратом).

masterabetona.ru

Сайт о строительных материалах, расчётах и личном опыте

Правила армирования

Правила армирования

Для продольного и поперечного армирования ленточного фундамента используется арматура класса A-III (A400) или А500. Для вспомогательного поперечного армирования (изготовления хомутов), помимо А400 и А500, может использоваться стержневая горячекатаная гладкая арматура класса A-I (А240), А-II, проволока (гладкая арматура) класса Вр-I. Продольные рабочие стрежни арматуры ленточного фундамента воспринимают совместно с бетоном основные нагрузки растяжения и сжатия, действующие вдоль продольной оси фундамента.  

   Кроме продольных стержней при армировании лент фундамент может устанавливаться поперечная арматура (хомуты) из расчета на восприятие нагрузок, действующих вдоль поперечной оси фундамента. Хомуты устанавливаются в ленту при её высоте более 15см.  Также поперечная арматура служит для ограничения развития трещин в бетоне, для удержания продольных стержней в проектном положении, и для закрепления от их бокового выпучивания при воздействии сжимающих нагрузок. В случае сжимающих нагрузок хомуты  следует устанавливать с шагом не более 15 диаметров сжатой продольной арматуры и не более 50 см, а конструкция хомутов должна обеспесивать отсутствие выпучивания продольной арматуры в любом направлении. Поперечная арматура устанавливается у всех поверхностей фундамента, вблизи которых устанавливается продольная арматура. Закрепление поперечной арматуры производят путем ее загиба и охвата продольной рабочей арматуры.  Также в фундаменте может использоваться конструктивная арматура, устанавливаемая  для восприятия непредусмотренных усилий, таких как усилия от усадки бетона или температурных деформаций. В частности, для фундаментных лент высотой сечения более 70 см рекомендуется установка дополнительной продольной  конструктивной арматуры на каждые  40 см  высоты ленты. По возможности арматуру следует монтировать укрупненными или пространственными заранее изготовленными элементами, по возможности сокращая объем применения отдельных стержней.

Процент армирования

   Существует некий допустимый диапазон армирования, определённый Сводом Норм и Правил (Пункт 7.3.5 СНиП 52-01-2003 «Бетонные и железобетонные конструкции»), который является одним из определяющих факторов выбора пространственной схемы армирования и может повлиять на выбор сечения ленты фундамента. Этот параметр лежит в диапазоне от 0,3 до 3% для балок, и не менее 0,1% для фундаментов. При армировании ленточных фундаментов, служащих опорой под колонны (например, при строительстве монолитного железобетонного каркаса здания) площадь сечения продольной арматуры для ребра Т-образного ленточного фундамента предусматривают с процентом армирования не менее 0,4% в каждом ряду. Это относительное содержание продольной рабочей арматуры в бетонном элементе от площади рабочего сечения этого элемента. Например, если у вас лента сечением 300х400мм, то площадь S сечения 300*400=120 000 мм.кв. Минимальное сечение арматуры составит 120 мм.кв., или 4 прута арматуры диаметром 8 мм (или 2 прута диаметром 10мм). Максимум можно заложить 10 прутов диаметром 22мм! Меньшее количество арматуры незначительно укрепит бетон и практически будет равно просто силе бетона на разрыв, но и больше 3% арматуры тоже не хорошо - арматуры будет столько, что она не успеет включится в работу, как бетон уже будет разрушен возникшей нагрузкой. Если расчёт приведёт вас к проценту армирования более 3%, нужно задуматься над увеличением сечения бетонного элемента. Сечение арматуры нетрудно посчитать, но для облегчения и визуализации я составил табличку сечений при разных количествах прутов арматуры:

Сечение нескольких прутов арматуры

Еще один пример из расчёта своего ростверка: У меня было рассчитано сечение ленты-ростверка как 22х30см, Это 66000 мм.кв. Расчёт армирования привёл меня к 6 прутам арматуры диаметром 12мм (3 снизу и 3 сверху) - это 678 мм.кв. арматуры. Посчитаем процент армирования: 678*100/66000=1,027% - он вписывается в допустимый диапазон от 0,1% до 3%, а значит выбранное соотношение между сечением бетона и армированием находится в "равновесии", количество арматуры и бетона экономически и расчётно обосновано. Подошло бы и 5 прутов по 12мм (565*100/66000=0,856%), расчёт по нагрузкам давал 45% запаса по прочности, однако я решил немного перестраховаться заложив 6-й прут и получил 90% запаса.

Диаметр арматуры

   Помимо минимального процента армирования существуют и требования по минимальному диаметру арматуры. Например, для продольной рабочей арматуры нельзя использовать арматуру диаметром менее 10мм. Продольную рабочую арматуру рекомендуется назначать из стержней одинакового диаметра. Если же применяются стержни разных диаметров, то стержни большего диаметра следует размещать внизу ленты фундамента,  в углах сечения ленты фундамента и в местах перегиба хомутов через рабочую арматуру. Стержни продольной рабочей арматуры должны размещаться равномерно по ширине сечения ленты фундамента. При этом размещение стержней арматуры верхнего ряда над просветами между арматурой нижнего ряда запрещается [пункт 3.94 Руководства по конструированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения, Москва, 1978]. При этом как в сварных, так и в вязаных каркасах диаметр продольных стержней должен быть не менее диаметра поперечных стержней арматуры. Максимальный диаметр сжатых стержней (для верхнего ряда) вряд-ли будет достигнут частными домостроителями, но для справки, он не должен быть более 40мм. Для удобства я собрал эти требования в нижеследующей табличке:

Минимальный диаметр арматурыВязка арматурного каркасаВязка арматурного каркасаВязка арматурного каркасаАрматурный каркасТолщина защитного слоя бетонаФиксаторы на арматуреПластиковый фиксаторФиксаторАрматураРазличные виды фиксаторовРазличные виды фиксаторовРазличные виды фиксаторов

Минимальное количество стрежней продольной рабочей арматуры в одном ряду

     В балках и ребрах шириной более 15 см число продольных рабочих растянутых стержней в поперечном сечении должно быть не менее двух. При ширине элемента 15 см и менее допускается устанавливать в поперечном сечении один продольный стержень. При этом устройство ленточных фундаментов шириной менее 15 см не допускается.

Максимальное количество стержней продольной арматуры в одном ряду и минимальное расстояние между стержнями арматуры

   Максимальное количество стержней в одном ряду в поперечном сечении монолитной бетонной балки определяется минимальным расстоянием в свету между отдельными стержнями продольной арматуры. Это минимальное  расстояние определено необходимостью свободного протекания бетонной смеси в тело ленты между стержнями арматуры фундамента при заливке бетона, возможностью его уплотнения и хорошей связи бетона с арматурой для совместной работы под нагрузкой. Минимальные расстояния между стрежнями продольной арматуры определены в пункте 7.3.4 СНиП 52-01-2003  “Бетонные и железобетонные конструкции”. Минимальное расстояние между стержнями продольной арматуры не может быть меньше наибольшего диаметра стержней арматуры и не менее 25 мм для нижнего ряда арматуры и 30 мм - для арматуры верхнего ряда при двух рядах армирования. При трех рядах армирования расстояние между стрежнями арматуры в верхнем ряду должно составить не менее 50 мм. При большом насыщении арматурой должны быть предусмотрены отдельные места с расстоянием между стержнями арматуры в 60 мм для прохождения между арматурными стержнями наконечников глубинных вибраторов, уплотняющих бетонную смесь. Расстояния между такими местами должны быть не более 500мм. Например, имеем ленту фундамента сечением 40х30см с двумя рядами арматуры. Создаются следующие ограничения: 1 - защитный слой бетона по 40мм с каждой стороны; 2 - минимальный диаметр арматуры 10мм; 3 - минимальное расстояние между арматурой 30мм. Итого, соблюдая все ограничения, получается возможным разместить по 6 рядов арматуры, при этом в верхнем ряду нужно один прут исключить для прохождения наконечника вибратора. Допустим, если бы высота ленты была 100 см, то возникает необходимость использовать три ряда арматуры, а это увеличивает минимальное расстояние между арматурой до 50 мм. В этом случае в одном ряду умещается не более 4 прутов арматуры.

Количество рядов арматуры

   В обычных условиях для индивидуальных домов в фундаменте достаточно двух рядов арматуры. Нижний, в большей степени работающий на растяжение и верхний, работающий на сжатие, если не возникнут выталкивающие силы грунтов. При высоте ленты до 70 см средних рядов арматуры делать не нужно, т.к. она там не работает, там не возникает ни растяжений, ни сжатий (если только не аварийная ситуация). Дополнительное  продольное армирование может понадобиться, если высота фундаментной ленты превышает 70 см. В этом случае лента фундамента рассматривается как балка, которой требуется конструктивное армирование. Стержни арматуры при конструктивном армировании не у граней балки (в середине ширины балки) не требуются. Они должны ставиться тлько у боковых поверхностей балок высотой поперечного сечения более 70 см. Расстояние между конструктивными стрежнями арматуры по высоте должно быть не более 40 см.

    Площадь сечения таких арматурных стрежней определяется не менее 0,1 % площади сечения бетона, но не от всей площади сечения балки, а от площади, образуемой расстоянием между этими стержнями и половиной ширины балки, но не менее чем 20 см. Например, при расстоянии между рядами арматуры по вертикали в 40 см и ширине ленты 30 см, определяемая минимальная площадь сечения арматуры будет отсчитываться от площади в 400 мм x 300 мм /2 =60 000 мм2 х 0,001=60 мм2 . Эти арматурные стержни должны соединяться хомутами или шпильками диаметром 6 - 8 мм из арматуры класса A-I с шагом 50 см по длине ленты фундамента.

Максимальный шаг между продольными стержнями арматуры

Максимальный шаг установки поперечной арматуры

Максимальный шаг продольной арматурыМаксимальный шаг поперечной арматуры

Толщина бетонного защитного слоя арматуры

   Защитный слой бетона, то есть расстояние от поверхности арматуры до соответствующей грани фундаментной ленты, предназначен для обеспечения совместной работы арматуры с бетоном, для закрепления (анкеровки) арматуры в бетоне и возможности устройства соединения арматуры. Также защитный слой бетона предохраняет арматуру от воздействия факторов окружающей среды, конструкций, в том числе и от огня.  Толщина защитного слоя бетона зависит от типа конструкции и роли арматуры в ней, ее диаметра и условий окружающей среды.

   Для продольной рабочей арматуры толщина защитного слоя должна быть, как правило, не менее диаметра стержня и не менее: 30 мм - для фундаментных балок и сборных фундаментов; 35 мм - для монолитных фундаментов при наличии бетонной подготовки; 70 мм - для монолитных фундаментов при отсутствии бетонной подготовки. При использовании бетонной подготовки (или на скальном грунте) – толщина бетонного защитного слоя снижается в отечественных нормах до 40 мм, а в американских до 25мм. Для сборных элементов минимальные значения толщины защитного слоя бетона рабочей арматуры уменьшают на 5 мм. Для конструктивной арматуры минимальные значения толщины защитного слоя бетона принимают на 5 мм меньше по сравнению с требуемыми для рабочей арматуры. Во всех случаях толщину защитного слоя бетона следует также принимать не менее диаметра стержня арматуры.    По требованиям ACI 318-05  защитный слой бетона на уличную строну для арматуры до 20 мм составляет 25 - 40 мм. Для диаметра арматуры толще 20 мм - 50 мм. Защитный слой для арматуры диаметром до 40 мм на стороне не подверженной действию природных факторов составляет 20 мм. По отечественным нормам защитный слой бетона с обеих сторон составляет 40 мм. Требуемую величину защитного слоя нижней арматуры и проектное положение арматуры в процессе бетонирования можно установить с помощью пластиковых фиксаторов, подкладок из бетона и  путем конструирования арматурного каркаса таким образом, чтобы некоторые стержни упирались в опалубку, фиксируя положение каркаса. Нижний защитный слой можно установить, закладывая под нижние стержни арматуры заранее изготовленные бетонные прокладки (сухари) размером 100×100 мм и толщиной, равной требуемой толщине защитного слоя. Применение прокладок из обрезков арматуры, деревянных брусков и щебня запрещается. Также для задания толщины защитного можно использовать пластиковые фиксаторы - спейсеры требуемого стандартного размера. Фиксаторы для арматуры выпускаются в размерах от 15 до 50 мм с шагом размера 5 мм.Толщина защитного слоя для поперечной арматуры бетонных элементов сечением меньше 25 см составляет 1 см, а для элементов сечением более 25 см – 1,5 см.

Требования к поверхности арматуры

    Арматуру следует монтировать укрупненными или пространственными заранее изготовленными элементами, по возможности сокращая объем применения отдельных стержней. С бетонной подготовки (подушки) в местах установки арматуры должны быть удалены мусор, грязь, снег и лед. Стержни арматуры должны быть обезжирены, очищены от любого неметаллического покрытия, краски, грязи, льда и снега, отслаивающегося налета ржавчины. Удаляется отслаивающаяся ржавчина с помощью металлической щетки. Разрешается наличие эпоксидного покрытия на арматуре. Существует мнение некоторых строителей - поливать водой арматуру за несколько дней перед укладкой, чтобы она заржавела и к ней сильнее прилипал бетон. В официальных комментариях к нормам указано: Обычная поверхностная неотслаивающаяся ржавчина усиливает силу сцепления арматуры с бетоном. Ржавая поверхность лучше склеивается с цементным гелем в составе бетона. Но отслаивающуюся ржавчину требуется удалить. Арматура периодического профиля имеет в 2-3 раза большее сопротивление выдергиванию, чем гладкая арматура. А арматура с гладкой полированной поверхностью держится в бетоне еще в 5 раз слабее.

Сварка или вязка арматуры

    Идеальным армированием фундамента является армирование сплошным безразрывным контуром арматуры. Однако, такое безразрывное армирование может быть получено только с использованием сварки или с использованием специальных резьбовых соединителей. В строительстве фундаментов часто применяют арматуру класса А-III А400 - такую арматуру сваривать недопустимо, она сильно теряет в прочности при нагревании. Сваривать можно только арматуру c литерой "С" в маркировке, например А500С.  Длина сварного шва для такой арматуры должна быть не менее 10 диаметров. Т.е. если арматура диаметром 12мм, то шов должен быть не менее 120мм. При этом отечественные нормы разрешают дуговую электросварку перекрестий арматуры только не менее 25 мм диаметром.

   Соединение арматуры нахлестом – самый распространенный вариант в дачном строительстве  из-за своей очевидной простоты исполнения. Однако есть ряд требований, которые необходимо выполнить, чтобы обеспечить правильную работу соединяемой арматуры. Соединение арматуры нахлестом допустимо для арматуры диаметром до 36 мм. Это ограничение связано с отсутствием экспериментальных данных по соединениям нахлестом для арматуры больших диаметров. Соединение арматуры не должно размещаться в местах концентрированного приложения нагрузки и местах наибольшего напряжения. Соединение арматуры нахлестом может производиться:

  • Со связкой стержней вязальной проволокой. В этом случае расстояние между прутами обусловлено лишь высотой выступов периодического профиля и может приниматься равным нулю.

  • Без связки. В случае свободного соединения с нахлестом расстояние между стыкуемыми нахлестом стержнями арматуры по вертикали и горизонтали должно быть не менее 25 мм или 1 диаметр арматуры, если диаметр арматуры больше 25 мм,  для обеспечения свободного проникновения бетона. Максимальное расстояние по ширине ленты фундамента между стыкуемыми свободным нахлестом стержнями должно быть не более 8 диаметров стержней арматуры. В нормативах ACI 318-05 рекомендуется делать свободные (не связанные) соединения стержней арматуры  в предварительно не напряженных конструкциях. Это объясняется тем, что при свободном соединении бетон охватывает все стороны каждого арматурного стержня и фиксирует стержень арматуры надежнее, чем при обхвате неполной окружности стержня при связке его проволокой с соседним стержнем.

  • Механическим способом.  C точки зрения экономии (перерасход арматуры на нахлесты до 27%), и безопасности здания (ограничение объема бетона в месте стыков), арматуру диаметром свыше 25 мм рекомендуется соединять механическим способом (винтовые муфты или опрессованые соединения).

  Соседние соединения арматуры по длине должны быть разнесены в разбежку так, чтобы в одном сечении одновременно соединялось не более 50% арматуры. минимальное расстояние между стыками арматуры по длине составляет 61 см. Не более половины всех стержней в одном расчетном сечении элемента фундаментной ленты могут иметь соединения. Стыкование отдельных стержней арматуры и сварных сеток без разбежки допускается при использовании арматуры для конструктивного (нерабочего) армирования.

  Нормы для анкеровки арматуры, работающей как на растяжение, так и на сжатие предусматривают нахлест стержней в 50 диаметров этих стержней, но не менее 30 см. Однако, величина нахлеста зависит и от класса (марки бетона: если для бетона класса В15 (M200) минимальный нахлест составляет  50d (диаметров арматуры), то при использовании бетона класса  В20 (M250), нахлест можно уменьшить до 40d. Для бетона класса В25 (M300) минимальный нахлест равен 35d. Для арматуры А-I и А-II минимальный нахлест равен 40d.

В общем, в двух словах: 1 - арматуру лучше вязать, чем варить, 2 - нахлёсты лучше не связывать, а оставлять между прутами расстояние около 25мм.

Нахлёст арматуры

Наблюдения

  Только соблюдая все эти ограничения и рекомендации можно сказать, что вы получите достаточное для большинства случаев армирование без дополнительных расчётов! Жизненные наблюдения показывают, что обычно люди льют столько бетона в фундамены, что если бы они их так же основательно армировали, то можно было бы на их фундаментах строить многоэтажки (правда, несущая способность грунтов обычно никак не учитывается). В большинстве случаев застройщики стремятся к самому минимальному проценту армирования, поскольку бетона у них такое количество, что даже 0,1% арматуры выглядит внушительно.  

Основные нарушения правил армирования

  •   Некоторые строители армируют углы ленточных фундаментов и примыканий лент с помощью перекрестий стрежневой арматуры. Такой способ является грубейшим нарушением типовых схем армирования углов и примыканий, ослабляющих конструкцию, который может привести к расслоению бетона. Не смотря на именно такую рекомендацию автора технологии ТИСЭ Яковлева я считаю это совершенно неприемлемым способом.

  •    Арматуру класса А-III можно гнуть в холодном состоянии на угол до 90° по диаметру изгиба с оправкой радиусом равным пяти диаметром сгибаемой арматуры без потери прочности. При загибе арматуры на 180 градусов прочность арматуры снижается на 10%. По американским нормам диаметр оправки  для арматуры номинальным диаметром до 26 мм сгибается по диаметру равному шести диаметрам сгибаемой арматуры, а арматура диаметром 28-36 мм сгибается по восьмикратному диаметру. При этом свободный загибаемый конец арматуры должен быть не короче 12 диаметров стержня арматуры. Нельзя сгибать арматуру, один конец которой уже замоноличен в бетон.  

  •    Практикуется как минимум два широко распространенных недопустимых приема гибки арматуры.  Если заказчик требует от рабочих сгибать арматуру для армирования углов и примыканий фундаментной ленты (как и положено), а не класть ее перекрестиями, то рабочие, ленясь, либо нагревают место сгиба автогеном, на костре или паяльной лампой, либо надпиливают место сгиба арматуры болгаркой. Понятно, что оба способа значительно ослабляют стрежни арматуры, что может привести к разрушению их целостности под  нагрузкой. Требование (пункт 7.3.1 ACI 318-08) гласит: Все виды арматуры должны сгибаться в холодном состоянии, если иное не предписано проектировщиком.

  • Некоторые строители считают, что в качестве рабочей арматуры можно использовать любой металл любой конфигурации: трубы, алюминиевые изделия, плоские листы, отходы от промышленной вырубки деталей, сетку рабицу, проволоку и т.п. Все эти материалы не обладают требуемыми характеристиками, чтобы адекватно воспринять нагрузки на сжатие или растяжение, и не предохраняют бетон от деформаций и образования трещин. Армирование рельсами также не рекомендуется из-за низкого сцепления бетона с гладкой поверхностью металла.  Включение в состав бетона алюминия приводит к химическим реакциям, разрушающим бетон. 

www.project-house.by

Расчёт армирования.

  Основная функция арматуры - не допустить растяжение бетонного изделия. Арматура в бетоне должна быть распределена равномерно, чтобы не было слабых мест в конструкции с плохой перевязкой и тогда нагрузка от бетонного слоя будет передаваться закладным элементам, у которых модуль упругости гораздо выше.

● Бетон обладает отличной прочностью на сжатие. Разрушение бетонного изделия начинается только под очень сильным давлением. Но нагрузка в бетоне распределяется неравномерно и при реальных условиях эксплуатации ж/б изделия невозможно предугадать, какая его точка будет испытывать наибольшую нагрузку. Как правило, максимальное напряжение приходится на точку опоры и при этом действует правило рычага - если подвесить бетонную балку за края, то воздействие на центр балки будет напрямую зависеть от длины этой балки. При этом деформация в разных точках балки будет разной - верхняя её часть при изгибе будет сжиматься, а нижняя - испытывать растяжение. И если сжатие для ж/б балки не страшно, то растяжение может обернуться трещиной или сломом при условии невысоких характеристиках упругости ж/б изделия.

 Расчет армирования.
● Определение диаметра и шаг ячейки каркаса. При возведение сооружений с невысокими требованиями, например при строительстве частного жилого дома, применяется система адаптированного расчёта, общий принцип которого заключается в том, что шаг ячейки будет равен десяти Ø стержня, но в местах примыкания и других ответственных элементах необходимо производить усиление дополнительными стержнями.

● Основные виды железобетонных изделий, применяемые в частном домостроении, это плиты и балки. Армирование плит происходит проще - две арматурные сетки из нескольких слоёв разносятся к верхней и нижней плоскостям в соответствии с нормативным защитным слоем. Размеры прутьев и ячеек рассчитываются в зависимости от габаритов плиты, а параметры арматурных сеток из таблицы.

Основные типы арматуры

1. Рабочая арматура выполняет непосредственную функцию армирования и принимает на себя нагрузку в приложенной плоскости. Используются горячекатаные стержни Ø 12–18 мм периодического или гладкого профиля, согласно ГОСТ 5781-82. В зависимости от способа крепления и области применения арматура может быть свариваемой и несвариваемой. Для фундаментных работ наиболее правильно будет применять периодический профиль с высокими показателями сцепления с окружающей массой - бетоном. Вспомогательное армирование чаще всего выполняется гладкими стержнями. Также важны материал, марка стали и класс арматуры - наиболее востребованы классы А400-А600.

2. Конструктивная арматура - для упорядочивания линий рабочего армирования в слое бетона, а при необходимости - для получения дополнительных связей. Конструктивные элементы из проволоки Ø 6-8 мм, распределяют в пространстве и фиксируют рабочие стержни с заданным шагом.

• Благодаря ряду преимуществ находит свои области применения стеклопластиковая арматура.

• При арматурных работах понадобится вязальная проволока. В висячей балке все стержни должны быть одинакового сечения не менее Ø16 мм, в лежачей балке вспомогательные стержни могут быть тоньше. Арматурный каркас висячей плиты - это две зеркально расположенные сетки.

● Как вязать арматуру крючком. Фото.

● Основные параметры армирования. В каждом конкретном расчёте есть ряд ключевых значений, описанных в пособии к СНиП 2.03.01:

• Коэффициент армирования - плотность закладки арматуры - определяется по поперечному срезу изделия как отношение суммы сечений арматурных стержней к сечению бетонной массы. Установленный нормами минимум - 0,05%. Коэффициент может увеличиваться по мере роста отношения длины сегмента к его высоте - до 0,25%.

• Толщина стержней арматуры. При длине сегмента свыше 3-х метров используется арматура диаметром не менее 12 мм, при длине сегмента более 6-ти метров - свыше 14 мм, при длине от 10-ти метров - Ø 16 мм и более.

● Переармирование - это когда прочность железобетонной конструкции преднамеренно завышена в два-три раза. Это делается для того, чтобы в случае каких-либо геоморфологических изменений в данной местности не пострадал строительный объект. Также при возведении частных жилых домов застройщики используют переармирование фундамента для того, чтобы в будущем иметь возможность сделать какие-либо надстройки и перепланировки своего дома без ущерба для всего строения - ведь заранее никто не сможет определить вес будущего строения, если даже хозяин пока не знает, будет ли он надстраивать ещё один этаж через пару-тройку лет.

● Армирующий каркас перед заливкой должен быть закреплён таким образом, чтобы по нему можно было передвигаться без опасения его разрушения. Во время заливки все линии перевязки армокаркаса не должны разрушаться - это уже будет брак.

kirpichdelo.ru

Лекции 4

Лекция № 4

СУЩНОСТЬ ПРЕДВАРИТЕЛЬНОГО НАПРЯЖЕНИЯ

Предварительно напряженные элементы– железобетонные элементы, в которых до приложения нагрузок, в процессе их изготовления, искусственно создается внутреннее напряженное состояние (самонапряжение), заключающееся в значительном обжатии бетона предварительно растянутой арматурой.

Предварительное напряжение применяется преимущественно в тех элементах, в которых при нагрузках возникают растягивающие напряжения. В отдельных случаях целесообразно применять преднапряжение в центрально и внецентренно сжатых элементах, в частности в гибких колоннах, где оно обеспечивает необходимую трещиностойкость на период транспортирования и монтажа, а также предотвращает потерю устойчивости элемента.

Предварительное напряжение элементов повышает трещиностойкость, жесткость, выносливость конструкций при работе под воздействием многократно повторяющихся нагрузок, позволяет применятьвысокопрочную арматуру при полном использовании ее механических свойств. Но само по себе преднапряжениеНЕповышает несущую способность. Как показывают опыты, в стадии разрушения эффект предварительного напряжения утрачивается, разрыв растянутой арматуры происходит при предельном напряжении и несущая способность предварительно напряженного элемента оказывается такой же, как и для железобетонного элемента без предварительного напряжения.

Экономику применения высокопрочной стали можно проиллюстрировать. С увеличением прочности стали ее удельная стоимость снижается.

Предварительное напряжение может создаваться двумя способами:

1. натяжением арматуры на упоры;

2. натяжением арматуры на бетон

Суть натяжения арматуры на упоры. Арматура натягивается и закрепляется на особых упорах стендов, форм. После бетонирования и приобретения бетоном достаточной прочности арматура освобождается с удерживающих устройств и, стремясь восстановить свою первоначальную длину, обжимает бетон. Напряжения в арматуре контролируются до обжатия бетона.

Суть натяжения арматуры на бетон. Сначала изготовляют бетонный или слабоармированный элемент. Для укладки рабочей арматуры в нем предусматривают каналы или пазы. После отвердения бетона арматура натягивается с передачей реактивных усилий непосредственно на бетон и при помощи анкеров удерживается в напряженном состоянии. Для создания сцепления арматуры с бетоном и защиты арматуры от коррозии каналы и пазы заполняют под давлением цементным тестом или раствором. Напряжения в арматуре контролируют по окончанию обжатия бетона.

Натяжение арматуры может быть выполнено 3 способами:

  1. механическим (домкратами, намоточными машинами и т.п.).

  2. электротермическим. Арматура, нагретая и удлиненная за счет пропуска электротока, закрепляется на упорах. Поскольку арматура при остывании свободно не сокращается, в ней возникают растягивающие напряжения. Этот способ распространен в России. Он надежен, малотрудоемок и был экономичен при централизованной экономике.

3. электротермомеханическим(комбинированным). Здесь полностью исключают обрыв арматуры, т.к. усилие механического натяжения не более 20-30% от общего усилия натяжения.

СТАДИИ НАПРЯЖЕННОГО СОСТОЯНИЯ ПРИ ИЗГИБЕ

1. Стадии напряженного состояния при изгибе

Стадия I – до появления трещин в бетоне растянутой зоны, когда напряжения в бетоне меньше временного сопротивления растяжению и растягивающие усилия воспринимаются арматурой и бетоном совместно.

При малых нагрузках на элемент напряжения в бетоне и арматуре невелики, деформации носят преимущественно упругий характер; зависимость между напряжениями и деформациями – линейная, эпюра нормальных напряжений в бетоне сжатой зоны сечения – треугольная.

Арматура в верхней зоне

высота сжатой зоны.

рабочая высота сечения.

Если арматуры не один ряд, то сначала находится центр тяжести всех стержней, и это расстояние от наиболее сжатого волокна до центра тяжестивсех стержней.

Стадия Iа – конец стадииI.

С увеличением нагрузки на элемент в бетоне растянутой зоны развиваются неупругие деформации, эпюра напряжений становится криволинейной, напряжения приближаются к пределу прочности при растяжении. При дальнейшем увеличении нагрузки в бетоне растянутой зоны образуются трещины, наступает новое качественное состояние.

Растянутый бетон полностью исчерпывает свои свойства – он находится в предельном состоянии.

Стадия Iа характеризует состояние перед образованием трещин.

максимальное значение напряжения.

Стадия Iа необходима для расчета по определению момента образования трещин. Достаточно приложить как угодно малую нагрузку, чтобы появилась трещина.

Стадия II – это стадия эксплуатации, необходимая для определения прогибови ширины раскрытия трещин.

В том месте растянутой зоны, где образовались трещины, растягивающее усилие воспринимается арматурой и участком бетона растянутой зоны над трещиной. В интервалах между трещинами в растянутой зоне сцепление арматуры с бетоном сохраняется, и по мере удаления от краев трещин растягивающие напряжения в бетоне увеличиваются, а в арматуре уменьшаются. С дальнейшим увеличением нагрузки на элемент в бетоне сжатой зоны развиваются неупругие деформации, эпюра нормальных напряжений искривляется, а ордината максимального напряжения перемещается в края сечения в его глубину.

С этого момента растянутый бетон практически не участвует в работе, в сжатом бетоне появляются пластические деформации.

Конец этой стадии – стадия IIа.

Стадия IIа (стадия предразрушения).

Стадия IIа характеризуется началом заметных неупругих деформаций в арматуре.

Стадия III (стадия разрушения).

По продолжительности это самая короткая стадия. Напряжения в арматуре достигают физического или условного предела текучести, а в бетоне – временного сопротивления осевому сжатию. Криволинейность эпюры нормальных напряжений сжатия становится ярко выраженной. Бетон растянутой зоны из работы элемента почти исключается.

Различают два характерных случая разрушения элемента.

Случай 1.

Случай I– случай пластического разрушения вследствие замедленного развития местных пластических деформаций арматуры. Разрушение начинается с проявления текучести арматуры, вследствие чего быстро растет прогиб и интенсивно уменьшается высота сжатой зоны сечения за счет развития трещин по высоте элемента и появления неупругих деформаций в бетоне сжатой зоны над трещиной. Участок элемента, на котором наблюдается текучесть арматуры и пластические деформации сжатого бетона, деформируется практически при постоянном предельном моменте. Поэтому такие участки носят названиепластических шарниров.

При слабом армировании трещина растет при небольших нагрузках, нулевая линия поднимается кверху сечения; при сильном армировании положение нулевой линии не меняется. Напряжения в сжатой зоне сечения достигают временного сопротивления осевому сжатию и может произойти раздробление бетона.

К случаю Iотносят также хрупкое разрушение элементов, армированных высокопрочной проволокой, так как разрыв последней из-за малого относительного удлинения при растяжении () происходит одновременно с раздроблением бетона сжатой зоны элемента.

Случай 2.

Этот случай наблюдают при разрушении элементов с избыточным содержанием растянутой арматуры. Разрушение таких элементов всегда происходит внезапно (хрупкое разрушение) от полного исчерпания несущей способности бетона сжатой зоны, при неполном использовании прочности растянутой арматуры. В этом случае прогибыи ширина раскрытия трещиннезначительны. Несущая способность такого элемента практически перестает быть зависимой от площади продольной арматуры, а является функцией прочности бетона, формы и размеров сечения.

Нормально армированныеэлементы – элементы, в которых полностью используется несущая способность арматуры.

Переармирование элементов допускают, когда площадь сечения рабочей арматуры недостаточна по расчету по второй группе предельных состояний или когда арматура принята по конструктивным соображениям.

Нормы рекомендуют расчет прочности выполнять по Iслучаю.

2. Трещиностойкость железобетонных конструкций

Под трещиностойкостьюконструкций понимают их сопротивление образованию трещин в конце стадииIНДС или сопротивление раскрытию трещин в стадииII.

Раннее образование и чрезмерное раскрытие трещин в растянутых зонах является существенным недостатком железобетонных конструкций, так как снижает их долговечность из-за коррозии арматуры и повышает деформативность из-за уменьшения момента инерции сечений элементов.

Железобетонные конструкции рассчитывают по:

образованию трещин;

раскрытию (непродолжительному и продолжительному) трещин;

закрытию (для непродолжительного раскрытия) трещин.

3. Граничная высота сжатой зоны.

Рассмотрим начальные деформации – работает гипотеза плоских сечений.

– – –еще один слой арматуры

Если арматура расположена близко к нейтральному слою, то расход арматуры неэкономичен, т.к. .

Исходя из величины армирования и учитывая, что при любом заданном значении прочности бетона и ширины сечения N=f(x), положение нейтрального слоя, в соответствии с принятыми гипотезами, может меняться от0<x<h0, необходимо ограничить рациональный диапазон высоты сжатой зоны.

Наибольшая высота сжатой зоны, при которой удается полностью использовать прочностные свойства арматурной стали в сечении, называется граничной высотой сжатой зоны ().

относительная граничная высота сжатой зоны.

относительная высота сжатой зоны.

Условие, когда арматурная сталь полностью использована в сечении – граничное условие между 1 и 2 случаем стадииIII(стадии разрушения).

Опыты показывают, что при разрушение элементов происходит по случаю 1, а припо случаю 2.

С ростом прочности бетона снижается его деформативность, а, следовательно, и способность к перераспределению напряжений по высоте сечения. Поэтому граничная высота сжатой зоны для высокопрочных бетонов получается меньшей по сравнению с менее прочными бетонами.

9

studfiles.net


Смотрите также