Некоторые аспекты печати на строительных 3D принтерах серии S. Принтер для бетона


Строительная смесь и комплектующие | Apis Cor. We print buildings

Что используется для 3D-печати строительных конструкций?

В технологии Apis Cor используется специально разработанная строительная смесь на цементной основе с добавлением специальных добавок, в том числе армирующих. По своим характеристикам смесь аналогична фибробетону марки М250, класс прочности B20.

Какие смеси можно применять для печати?

На данный момент для 3D-печати с помощью строительного принтера Apis Cor используется специально разработанная строительная смесь на цементной основе с добавлением специальных добавок, в том числе армирующих. Обычные бетонные растворы, применяемые в гражданском строительстве, для 3D-печати использовать нельзя из-за особенности технологии и конструкции оборудования. В таком случае мы не гарантируем заявленные характеристики отпечатанных конструкций, а также исправной работы оборудования.

Соответствуют ли получившиеся конструкции строительным нормам?

Создаваемая в процессе 3D печати строительная конструкция соответствует нормам безопасности, энергоэффективности и экологичности, что подтверждено протоколами испытаний.

Что может случиться при использовании прочих строительных смесей?

Самостоятельное использование прочих строительных смесей, не рекомендованных компанией Apis Cor, может привести к порче оборудования. Получившаяся строительная конструкция может не соответствовать требованиям безопасности, механической прочности, водо- и паропроницаемости, огне и морозостойкости, экологичности и др. Гарантия на оборудование аннулируется. Компания не несёт ответственности за прочность и другие физикомеханические характеристики получившийся строительной конструкции. Компания Apis Cor снимает с себя гарантийные обязательства в случае использования клиентом строительных смесей, не утвержденных компанией Apis Cor.

Сколько стоит строительная смесь?

Стоимость строительной смеси варьируется в зависимости от объёма поставки и стоимости инертных материалов в регионе, в котором будет осуществляться строительство. На данный момент стоимость разработанного и испытанного нами состава в среднем по территории РФ составляет от 6 000 ₽ до 9 000 ₽ за 1 м³.

Где приобрести строительную смесь для принтера?

Для приобретения сухой строительной смеси Вам необходимо обратиться в нашу компанию, мы подберём ближайший к Вам завод сухих смесей, передадим им рецептуру и технологическую карту замешивания смеси.

Где приобрести закладные и другие комплектующие?

Большая часть комплектующих, используемых в процессе строительства, являются стандартными. Их можно приобрести у большинства производителей и продавцов строительных материалов.

В каком виде поставляется смесь?

Строительная смесь поставляется в сухом виде и смешивается с водой в мобильном автоматизированном комплексе подготовки и подачи строительной смеси (МАК).

apis-cor.com

Технология строительной печати на 3D принтере: проблемы и решения

Главная Статьи Некоторые аспекты печати на строительных 3D принтерах серии S

Применение принтеров 3D— печати в строительстве в настоящее время ограничено радом причин. Среди них масса технических проблем, но основная — отсутствие нормативной и законодательной базы для такого рода строительства.

Именно отсутствие нормативов мешают взять на вооружение 3D оборудование крупным строительным компаниям, рассматривающим концепцию строительной печати именно для многоэтажного и массового строительства. Нерешённые проблемы применения строительной 3D печати сводят на нет возможность применения её в поточной застройке.

Однако вполне реальным на этом фоне выглядит возможность малоэтажного индивидуального строительства, строительства летних домов, гаражей, всевозможных беседок, ландшафтных построек, прудов, детских городков, бассейнов. Понятно, что всё это удел средних и малых предпринимателей, имеющих возможность быстро и гибко работать с потенциальным , но ещё пока, увы, не массовым заказчиком.

Отсутствие на рынке оборудования для строительной 3D печати объясняется прежде всего сравнительно высокой стоимостью его для этого сегмента предпринимателей.

Кроме того даже небольшой принтер формата 4 х 6 метров, предназначенный для печати элементов зданий, предметов ландшафтного дизайна высотой до 3 метров – уже довольно внушительная конструкция, требующая ещё и достаточно большого помещения. Кроме места для установки самого 3D – принтера требуется предусмотреть участок подготовки бетонной смеси и её подачи в печатающую головку, участок предварительной сушки, складские помещения и участок погрузки.

Кстати говоря, применение принтеров для печати не целиковых зданий, а их составляющих в условиях производства позволяет исключить сезонность строительства, т.е. печатать отдельные части зданий, выдерживая их в складских помещениях до набора прочности бетона и только затем собирая их в целое здание на строительной площадке.

Строительный 3D – принтер S – 6043 позволяет печатать элементы зданий размером до 5 х 3,2 метра, высотой до 2,8 метра составами на основе цемента с добавлением фиброволокна и коалиновыми смесями при температуре окружающего воздуха в помещении от +5 до + 30 градусов по Цельсию.

Применение коалиновых смесей для печати печей, каминов, мангалов, барбекюшниц и прочих огнеупорных изделий специфично и узкопрофильно, кроме этого процесс требует наличие печей для предварительного обжига. Однако сам процесс печати ничем не отличается от печати например предметов садового интерьера цементными составами.

Более широкое применение может найти цементная смесь с фиброволокном. Что такое цемент и инертные наполнители знают не только профессиональные строители. Что такое фиброволокно для бетона – поясним : это волокна из базальта, стали или полипропилена. Добавление фибры в бетон позволяет достичь сразу нескольких целей:

- армирование бетона, вплоть до полной замены армокаркаса на фиброволокно, обеспечивая тем самым жёсткость и прочность конструкции, уменьшая её вес и снижая расходы на создание армокаркаса;

- увеличение устойчивости изделий к изгибу при длительном воздействии высоких температур. При нагреве бетона вплоть до 1100°С фиброволокна повышают устойчивость бетонных элементов к раскалыванию;

- повышение пластичности цементных растворов, что особенно важно для равномерной подачи смеси через печатающую головку строительного принтера;

- уменьшение удельного веса смеси, позволяющее нанесение большего количества слоёв при печати;

- повышение износостойкости бетонных изделий, при полном застывании бетона вплоть до 30%.

- защищенность от внешнего воздействия влаги и агрессивных веществ. Капилляры, образующиеся в процессе дегидрации бетона заполняются фиброволокном, не позволяющим проникать в бетон влаге из вне.

Несомненно к самым важным свойствам фиброволокна для процесса строительной печати являются его лёгкость и увеличение пластических свойств цементной смеси.

Применение фиброволокон при печати на строительном 3D – принтере S – 6043 быстротвердеющими цементными составами позволяет получить толщину укладываемого слоя до10 мм при ширине до 30 мм. При этом подвижность смеси в печатающей головке сохраняется в течении часа. Малое время сохранения подвижности смеси позволяет печатать элементы сравнительно большой высоты без промежуточного подсушивания. Однако, лабораторные испытания контрольных образцов показали, что прочность таких составов относительно не велика: при сжатии в возрасте 28 суток 1,6 МПа, а прочность на растяжение при изгибе чуть менее 1 МПа. Кроме этого, быстротвердеющие смеси не годятся для изделий, эксплуатируемых вне помещений.

Больший интерес представляют высокопрочные смеси с модифицирующими и минеральными добавками позволяющими получить высокопрочные водостойкие и трещиностойкие изделия. Применение таких составов для печати элементов зданий обеспечивает достаточную несущую способность, морозостойкость и сопротивление паропроницаемости. Лабораторные испытания напечатанных контрольных образцов из высокопрочных смесей показали, что прочность при сжатии в возрасте 28 суток достигает 10 МПа, а прочность на растяжение при изгибе 3,5 МПа. При этом морозостойкость обеспечивается на уровне 35-40 циклов. Гидроскопичность изделий лежит в пределах 10%.

Подвижность высокопрочных смесей применяемых для 3D - печати сохраняется сравнительно долго - до 2-4 часов. Это качество является недостатком для печати высоких элементов. Для достижения несущей способности слоёв приходится периодически подсушивать изделие, что увеличивает время печати.

Отдельно стоит поговорить о армировании печатаемых изделий. Совершенно понятно, что применение металлической арматуры в привычном понимании при печати на строительном 3D – принтере вызывает трудности; вручную требует опять же, извините за тавтологию, ручного труда, автоматизировано – сложных и дорогостоящих роботов. Частично эта проблема решается применением вышеописанного фиброволокна, частично путём привычного армирования в технологические пустоты стен при сборке зданий с последующей заливкой бетоном. Не исключается возможность горизонтального армирования – укладки арматуры или плоских армокаркасов между слоями изделий в процессе печати.

Применение строительных 3D – принтеров S – 4040 и S – 6043 для печати целых зданий на открытых строительных площадках непосредственно на фундамент возможно, но ограничено размерами рабочей зоны. Однако, учитывая возможную стеснённость строительной площадки, это может являться преимуществом. Переставляется принтер S – 6043 в течении 1-2 часов.

Для печати зданий целиком больше подходит принтер S – 1160 с рабочим полем 10 х 7 метров. Принтер позволяет печатать здания и сооружения высотой до 5,5 метров. Соответственно при одной разовой перестановке принтера можно напечатать дом площадью более 120 метров в одном этаже.

Общий подход к моделированию описан нами в статье СТРОИТЕЛЬНЫЕ 3D - ПРИНТЕРЫ. Моделирование на станках серии S.

Поделиться:

04 апреля 2015

specavia.pro

Чем же печатают 3D-принтера?

3D печать основана на технологии послойного выращивания твёрдых объектов из различных материалов. Объёмные модели печатаются из пластика, бетона, гидрогеля, металла и даже из живых клеток и шоколада. В настоящей статье мы представим краткий обзор наиболее популярных материалов для 3D печати.

ABC-пластик

АBC-пластик известен как акрилонитрилбутадиенстирол. Это один из лучших расходных материалов для 3D печати. Такой пластик не имеет запаха, не токсичен, ударопрочен и эластичен. Температура плавления АВС-пластика составляет от 240°С до 248°С. Он поступает в розничную продажу в виде порошка или тонких пластиковых нитей, намотанных на бобины.

3D модели из АВС-пластика долговечны, но не переносят прямой солнечный свет. С помощью такого пластика можно получить только непрозрачные модели.

АВС-пластик для 3D печати

Акрил

Акрил используется в 3D печати для создания прозрачных моделей. При использовании акрила необходимо учитывать следующие особенности: для данного материала нужна более высокая температура плавления, чем для АВС-пластика, и он очень быстро остывает и твердеет. В разогретом акриле появляется множество мелких воздушных пузырьков, которые могут вызвать визуальные искажения готового изделия.

Изделия, напечатанные из акрила

Бетон

В настоящее время изготовлены пробные образцы 3D принтеров для печати бетоном. Это огромные печатающие устройства, которые кропотливо, слой за слоем, «печатают» из бетона строительные детали и конструкции. Такой 3D принтер может всего лишь за 20 часов «напечатать» жилой двухэтажный дом общей площадью 230 м2.

Для 3D печати используется усовершенствованный сорт бетона, формула которого на 95% совпадает с формулой обычного бетона.

Изделия, напечатанные бетоном

Гидрогель

Учёные из иллинойского Университета (США) напечатали при помощи 3D принтера и гидрогеля биороботов длиной 5-10 мм. На поверхность биороботов поместили клетки сердечной ткани, которые распространились по гидрогелю и начали сокращаться, приводя в движение робота. Такие роботы из гидрогеля способны передвигаться со скоростью 236 микрометров в секунду. В будущем они будут запускаться в организм человека для обнаружения и нейтрализации опухолей и токсинов, а также для транспортировки лекарственных препаратов к месту назначения.

Биороботы из гидрогеля, напечатанные 3D принтером

Бумага

В некоторых 3D принтерах в качестве материала для печати используется обычная бумага формата А4. Так как бумага – это доступный и недорогой материал, то и бумажные модели получаются недорогими и доступными для пользователей. Такие модели печатаются послойно, причём каждый последующий слой бумаги вырезается принтером и наклеивается на предыдущий. Модели из бумаги печатаются быстро, но не могут похвастаться прочностью или эстетичностью. Они идеально подойдут для быстрого прототипирования компьютерного проекта.

 

3D модели, напечатанные из бумаги

Гипс

В современной 3D печати широко применяются гипсовые материалы. Модели, изготовленные из гипса, недолговечны, но имеют очень низкую себестоимость. Такие модели идеально подходят для изготовления объектов, предназначенных для презентаций. Их можно показывать в качестве образца заказчикам и клиентам, они отлично передадут форму, структуру и размер оригинального изделия. Так как гипсовые модели отличаются высокой термостойкостью, их используют в качестве образцов для литья.

3D модель, напечатанная из гипса

Деревянное волокно

Изобретатель Кай Парти разработал специальное деревянное волокно для 3D печати. Волокно состоит из дерева и полимера и по своим свойствам похоже на полиактид (PLA). Комбинированный материал позволяет получить долговечные и твёрдые модели, которые внешне выглядят как деревянные изделия и имеют запах свежеспиленного дерева. В настоящее время инновационный материал используется только в самореплицирующихся принтерах RepRap.

 

3D модель, напечатанная деревянным волокном

Лёд

В 2006 году два канадских профессора получили грант на развитие технологии 3D печати ледяных фигур. За три  года они научились создавать при помощи 3D принтеров небольшие ледяные предметы. Печать протекает при температуре -22°С, в качестве расходных материалов используются вода и метиловый эфир, подогретый до температуры 20°С.

Фигура, напечатанная льдом

Металлический порошок

Ни один пластик не сможет заменить металл с его приятным мягким блеском и высокой прочностью. Поэтому в 3D печати очень часто используется порошок из лёгких и драгоценных металлов: меди, алюминия, их сплавов, а также золота и серебра. Однако металлические модели не обладают достаточной химической стойкостью и имеют высокую теплопроводность, поэтому в металлический порошок для печати добавляют стекловолоконные и керамические вкрапления.

Украшения из металлического порошка, напечатанные 3D принтером

Нейлон

Печать нейлоном имеет много общего с печатью АВС-пластиком. Исключениями являются более высокая температура печати (около 320°С), высокая способность впитывать воду, более продолжительный период застывания, необходимость откачки воздуха из экструдера из-за токсичности компонентов нейлона. Нейлон – это достаточно скользкий материал, для его применения следует оснастить экструдер шипами. Несмотря на перечисленные недостатки, нейлон с успехом используют в 3D печати, так как детали из данного материала получаются не такими жёсткими, как из АВС-пластика, и для них можно использовать шарниры скольжения.

Нейлоновая нить для 3D печати

Изделия из нейлона, напечатанные 3D принтером

Поликапролактон (PCL)

Поликапролактон близок по свойствам к биоразлагаемым полиэфирам. Это один из самых популярных расходных материалов для 3D печати. Он имеет низкую температуру плавления, быстро затвердевает, обеспечивает прекрасные механические свойства готовых изделий, легко разлагается в человеческом организме и безвреден для человека. Кроме того, он может применяться сразу в нескольких технологиях 3D печати: SLS, ZCorp и FDM.

Поликапролактон для 3D принтера

Поликарбонат (PC)

Поликарбонат – это твёрдый пластик, который способен сохранять свои физические свойства в условиях экстремально высоких и экстремально низких температур. Обладает высокой светонепроницаемостью, имеет высокую температуру плавления, удобен для экструзионной обработки. При этом его синтез сопряжён с рядом трудностей и экологически не безвреден. Используется для печати сверхпрочных моделей в нескольких технологиях 3D печати: SLS, LOM и FDM.

Полилактид (PLA)

Полилактид – это самый биологически совместимый и экологически чистый материал для 3D принтеров. Он изготавливается из остатков биомассы, силоса сахарной свёклы или кукурузы. Имея массу положительных свойств, полилактид имеет два существенных недостатка. Во-первых, изготовленные из него модели недолговечны и постепенно разлагаются под действием тепла и света. Во-вторых, стоимость производства полилактида очень высока, а значит и стоимость моделей будет значительно выше аналогичных моделей, изготовленных из других материалов. Используется в технологиях 3D печати: SLS и FDM.

Полилактидная нить и изделия, напечатанные полилактидом на 3D принтере

Полипропилен (PP)

Полипропилен – это самая лёгкая из всех ныне существующих пластических масс. По сравнению с полиэтиленом низкого давления хуже плавится и лучше противостоит истиранию. При этом уязвим к активному кислороду и деформируется при отрицательных температурах.

Полипропилен для 3D печати

Полифенилсульфон (PPSU)

Данный материал пришёл в 3D печать из авиапромышленности. Он практически не горит, характеризуется теплостойкостью, высокой твёрдостью. Напоминает обычное стекло, но превосходит его по прочности. Используется в технологиях 3D печати: SLS и FDM.

Полиэтилен низкого давления (HDPE)

Это самый распространённый вид пластмассы в мире, из которого изготавливают ПЭТ-бутылки, канистры, трубы, плёнки, пакеты и т.д. В 3D печати полиэтилен низкого давления является непревзойдённым лидером. Данный материал может быть использован в любой технологии 3D печати.

Полиэтиленовая обувь, напечатанная на 3D принтере

Шоколад

Британские учёные представили публике первый шоколадный 3D принтер, который печатает любые шоколадные фигурки, заказанные оператором. Принтер наносит каждый следующий слой шоколада поверх предыдущего. Благодаря способности шоколада быстро застывать и твердеть при охлаждении, процесс печати протекает довольно быстро. В ближайшем будущем такие принтеры будут востребованы в кондитерских и ресторанах.

Шоколадный принтер в работе

Прочие материалы

Существуют 3D принтеры, которые предназначены для печати глиняными смесями, известковым порошком, продуктами питания, живыми органическими клетками и многими другими удивительными материалами. О том, какие материалы для 3D печати будут использоваться в ближайшем будущем, остаётся лишь догадываться.

sitmaster.by

Новый голландский роботизированный 3D-принтер печатает стены из «зеленого» бетона

Новый голландский роботизированный 3D-принтер печатает стены из «зеленого» бетона

В последнее время было представлено несколько интересных проектов по строительству домов из бетона с помощью роботизированных 3D-принтеров. Но все эти устройства, как правило, являются достаточно громоздкими и медленными, что явно не подходит для использования в коммерческом строительстве. Но недавно в Нидерландах появилось еще одно заманчивое устройство – 3D-принтер-манипулятор, который тоже может строить бетонные конструкции из специального типа бетона. Разработала этот строительный 3D-принтер голландская компания CyBe Additive Industries, образованная в 2013 году и сегодня имеющая офисы в Амстердаме, Эйндховене и Оссе.

Новый голландский роботизированный 3D-принтер печатает стены из «зеленого» бетона

Новый робот-манипулятор ProTo R 3DP разрабатывался с нуля, на основе постоянного экспериментирования. Последний прототип устройства имеет диапазон действия 3,15 м во всех направлениях, и способен выдавливать цемент со скоростью 175 мм/сек из печатающей головки диаметром 30 мм. Таким образом, толщина каждого слоя цемента составляет 30 мм.

Новый голландский роботизированный 3D-принтер печатает стены из «зеленого» бетона

Компания также утверждает, что к манипулятору можно присоединить несколько экструзионных головок, и тогда скорость экструзии может быть увеличена вплоть до 4000 мм/сек. Кроме того, компания в настоящее время работает над созданием головки, которая позволит печатать слои бетона толщиной всего 5 мм.

Новый голландский роботизированный 3D-принтер печатает стены из «зеленого» бетона

Впрочем, интерес представляет не столько сам строительный 3D-принтер, сколько материал для печати, бетонный раствор CyBe, кстати, тоже разработанный компанией CyBe Additive Industries в сотрудничестве со своим партнером. К сожалению, состав бетонного раствора пока держится в секрете, но компания утверждает, что этот материал отвердевает в течение нескольких минут, что позволяет ускорить печать, а процесс гидратации завершается в течение 24 часов. Но и это еще не все. При использовании этого нового типа бетона в атмосферу выбрасывается на 32 процента меньше углекислого газа, по сравнению с обычным бетоном, что делает материал более экологически чистым. Кроме того, бетон CyBe полностью подлежит вторичной переработке, что позволит значительно сократить количество отходов.

Новый голландский роботизированный 3D-принтер печатает стены из «зеленого» бетона

На видео, представленном ниже, показано строительство бетонной стены размером 380 см х 40 см х 123 см (XYZ) с использованием ProTo R 3DP, который работал на скорости 160 мм/сек и выдавливал слои 30 мм толщиной. Стена была построена всего за полчаса и отвердела через несколько минут.

Компания утверждает, что в нынешнем виде ProTo R 3DP может быть использован для возведения простых, но полезных бетонных структур, таких как канализационные ямы.

Новый голландский роботизированный 3D-принтер печатает стены из «зеленого» бетона

Новый голландский роботизированный 3D-принтер печатает стены из «зеленого» бетона

фотоматериал: 3ders.org

www.vzavtra.net

Новый голландский роботизированный 3D-принтер печатает стены

ЕСТП Блог неоднократно писал о строительстве домов с помощью 3D-принтеров. Технология эта, действительно, привлекает внимание, так как еще несколько лет назад невозможно было даже представить, что в домах, напечатанных на принтере, можно будет жить. 

Первые такие дома появились в Китае, однако 3D-принтер, с помощью которого это было сделано, был очень громоздким и медленным. Голландская компания CyBe Additive Industries задалась целью создать роботизированный 3D-принтер, который сочетал бы в себе такие качества как маневренность, быстрота возведения конструкций, относительно небольшой размер и подходил бы для использования в коммерческом строительстве. В конце прошлого года в Нидерландах представили машину, удовлетворяющую всем этим условиям.

Новый робот-манипулятор ProTo R 3DP разрабатывался учеными компании CyBe Additive Industries с нуля. Последний прототип устройства имеет диапазон действия 3,15 м во всех направлениях, и способен выдавливать цемент со скоростью 175 мм/сек из печатающей головки диаметром 30 мм. Таким образом, толщина каждого слоя цемента составляет 30 мм.

Специалисты утверждают, что к манипулятору также можно присоединить несколько экструзионных головок, и тогда скорость экструзии может быть увеличена вплоть до 4000 мм/сек. Кроме того, в настоящее время в компании ведутся разработки дополнительной головки, которая позволит печатать слои бетона толщиной всего 5 мм.

Специально для этого принтера компания разработала и особый бетонный раствор, который заслуживает отдельного внимания. Состав раствора держится в секрете, однако о его характеристиках ученые рассказывают вполне охотно. Материал схватывается в течение всего пары минут, что позволяет существенно ускорить процесс печати, а полностью цикл отвердевания занимает 24 часа.

Но и это не все плюсы нового материала. При использовании этого типа бетона в атмосферу выбрасывается на 32 процента меньше углекислого газа, по сравнению с обычным бетоном, что делает материал более экологически чистым. Кроме того, бетон CyBe полностью подлежит вторичной переработке, что тоже благоприятно сказывается на экологии.

estp-blog.ru

Строительство - ООО "ОБЪЁМ"

Сегодня 3D печать вызывает самый живой интерес общественности. За достаточно короткий промежуток времени, прошедший с момента появления первых 3D-принтеров, люди научились печатать посуду, одежду, игрушки, расходные материалы для принтеров и сами принтеры, машины, и даже человеческие органы и ткани. Следующим шагом на пути развития технологии 3D-печати стала печать строительных конструкций и жилых домов.

Группа учёных под руководством доктора Сунгву Лима (Sungwoo Lim) из британского Университета Лафборо (Loughborough University) разрабатывает новые подходы к применению 3D-печати в строительстве. Проект финансируется из средств Исследовательского совета инженерных и физических наук (EPSRC) при Исследовательском центре по Инновациям в промышленности и строительстве Университета Лафборо.

Учёные, задействовав технологию 3D-печати и усовершенствованную формулу цемента, научились печатать как небольшие конструкции типа цветочниц, вазонов, лавочек и строительных блоков, так и полноразмерные конструкции для строительства. Новая технология обеспечивает полную свободу творчества при проектировании зданий, которые отныне могут иметь любые формы и линии: изогнутые, выпуклые, кубические, краеугольные и т.д. 

Не так давно исследователи продемонстрировали конструкцию под названием «Чудесная скамейка» размером 1х2х0,8 м. Прочность материала, изготовленного для печати 3D-скамейки, составила 95 % от прочности бетона. Фотография полученной конструкции представлена на рисунке 1.

Рис. 1. «Чудесная скамейка», напечатанная строительным 3D-принтером

Строительный 3D принтер в своей работе использует технологию экструдирования, при которой каждый новый слой строительного материала выдавливается из принтера поверх предыдущего слоя. О высоком разрешении печати в данном случае говорить не приходится, да это и не критично для строительства, так как бетон легко поддаётся последующей обработке и отделке. Зато 3D-печать позволяет получить уникальные бетонные формы без опалубки, существенно сократив при этом затраты живого труда и время сдачи объекта.

Чтобы конструкция получилась прочной и гладкой, учёные решили использовать вместо обычной печати многослойную. В результате была создана первая в мире пустотелая панель с двойными закруглёнными контурами. Учёные изготовили и другие конструкции, которые можно с успехом использовать для строительства (рисунок 2).

Рис. 2. Пустотелая панель с двойными изогнутыми контурами

Разработчики уверены, что технологии 3D-печати уготовано большое будущее. В ближайшее время планируется заменить 3-осную систему роботизированной руки на 7-осную, увеличив тем самым скорость печати, качество готовых конструкций и обеспечив возможность запечатывания больших объектов.

Ещё один проект, связанный с использованием строительных 3D-принтеров, разработала группа учёных из Южно-Калифорнийского университета под руководством профессора Берока Кошневиса (Behrokh Khoshnevis). Идея, положенная в основу проекта, проста и понятна. Авторы предлагают установить на строительную площадку гигантский 3D-принтер, подключив к нему компьютер с особым программным обеспечением. После этого остаётся лишь обеспечить непрерывную подачу на 3D-принтер бетона. По команде оператора 3D-принтер будет заливать фундамент будущего здания, формировать его стены. Бригаде строителей останется лишь контролировать процесс 3D-печати и укладывать плиты перекрытия на разных стадиях возведения здания.

Макет 3D-принтера для печати зданий и сооружений показан на рисунке 3.

Рис. 3. Макет 3D-принтера для печати зданий и сооружений

Применение строительных 3D-принтеров повысит точность возведения зданий и многократно сократит сроки их сдачи. Автоматизация ручного труда позволит сократить численность строительных рабочих и минимизировать риск производственных травм.

3D принтер для печати бетоном в сложенном состоянии

3D принтер для печати бетоном на строительной площадке

3D принтер возводит из бетона строительные конструкции

Рис. 4. Визуализированная модель строительного 3D-принтера

Технология 3D-печати зданий и сооружений, предложенная  группой учёных из Южно-Калифорнийского университета, была названа Contour Crafting, она включает в себя огромный 3D-принтер, который устанавливается над местом строительства дома. Принтер возводит стены, накладывая друг на друга многочисленные слои бетона, на ходу добавляя проводку и сантехнику. В итоге получается готовое здание, только без дверей и окон. Принтер может также красить стены и укладывать плитку. Таким образом, принтер способен выполнить до 90 % операций, связанных с возвещением зданий.

А вот так работает прототип 3D-принтера для печати бетоном (рисунок 5).

Рис. 5. 3D принтер печатает бетоном строительную конструкцию

3D-принтер с системой Contour Crafting был разработан специально для строительства бюджетного жилья. Однако со временем он может быть модифицирован для строительства более дорогого жилья класса «Люкс», а также для более объёмных нежилых помещений.

На данном этапе развития технологии 3D-печати планируется строить дома общей площадью до 230 м2 не более чем за 20 часов.

Применение 3D-принтеров в строительстве позволит отойти от традиционных форм зданий и создавать дома неправильной формы, с изогнутыми контурами и линиями (рисунок 6).

Рис. 6. Дом с изогнутыми линиями, который можно напечатать при помощи 3D-принтера

При помощи 3D-печати можно возводить роскошные креативные дома с уникальными элементами конструкций. Представьте себе нечто эстетически совершенное и при этом выстроенное всего за несколько часов без потенциальной опасности для строителей.

3D печать бетоном будет также полезна для строительства домов в местностях, пострадавших от стихийных бедствий, в бедных развивающихся странах и во всех других случаях, когда требуется за короткое время обеспечить жильём большое количество людей.

В настоящее время концепция строительства зданий при помощи 3D-принтеров уже заинтересовала несколько крупных строительных компаний, которые готовы использовать данную технологию на практике. Нет никаких сомнений, что в ближайшем будущем использование 3D-принтеров в строительстве станет реальностью. По самым смелым замыслам 3D-принтеры можно будет использовать не только для строительства небольших коттеджей, но и для возведения небоскрёбов.

 

3-dprinting.ru