Пропаривание при атмосферном давлении. Пропаривание бетона


Пропаривание при атмосферномдавлении |

Пропаривание при атмосферном давлении

Поскольку повышение температуры при твердении бетона повышает интенсивность роста прочности, то достижение заданной прочности может быть ускорено пропариванием бетона в специальных камерах. Когда пар находится при атмосферном давлении, т.е. его температура ниже 100° С, твердение можно считать разновидностью влажного ухода. Выдерживание бетона при высоком давлении (автоклавная обработка) является совершенно другой технологией и рассматривается в следующем разделе. Пропаривание успешно применялось для бетонов, приготовленных на различных портландцементах, но его нельзя применять для бетона на глиноземистом цементе из-за вредного воздействия жары и влаги на прочность этого цемента. Бетон с более низким В/Ц реагирует на пропаривание намного лучше тощих бетонов.

Основная цель пропаривания заключается в получении достаточно-высокой прочности на ранней стадии, так как бетонные изделия могут приобрести прочность вскоре после бетонирования. Раскрывать форму или освобождать оснастку предварительного напряжения можно значительно раньше, чем при обычном влажном выдерживании, при этом требуется меньшая производственная площадь для хранения при выдерживании; все это дает экономические преимущества. На практике для многих случаев прочность бетона в более поздние сроки имеет меньшее значение. Из-за характера операций, входящих в процесс пропаривания, оно применяется главным образом для сборных деталей. Пропаривание при низком давлении обычно осуществляют в специальных камерах или тоннелях, через которые бетонные элементы подают на конвейерной ленте. Или же предварительно изготовленные детали покрывают передвижными кожухами или покрышками из пластика, под которые пар подается через гибкие шланги.

Учитывая влияние температуры на ранних стадиях твердения на позднейшую прочность, должно быть найдено компромиссное решение между температурами, дающими высокую прочность на ранней стадии и на более поздней стадии твердения. На рис. 5.32 показаны значения прочности бетона, изготовленного на модифицированном цементе с ВЩ, равным 0,55; пропаривание производилось непосредственно после изготовления.

Аналогичная проблема возникает при определении скорости повышения температуры в начале пропаривания. Установлено, что если температура 48,9°С достигается за период меньше 2—3 ч или температура 98,9° С — за период меньше 6—7 ч с момента перемешивания, то это отрицательно влияет на рост прочности после первых нескольких часов. Нельзя допускать такой быстрый подъем температуры. Быстрое твердение может привести к потере прочности на одну треть в более позднем возрасте по сравнению с влажным выдерживанием при комнатной температуре. Отрицательное действие быстрого подъема температуры заметнее при более высоком водоцементном отношении в смеси и оно более ощутимо при быстротвердеющем цементе по сравнению с обыкновенным портландцементом. Саул установил, что когда скорость подъема температуры бетона не превышает значений, указанных ранее, то его прочность немного отличается от прочности нормально выдержанного бетона и находится в зоне А на рис. 5.33. Прочность слишком быстро нагреваемого бетона лежит в зоне В.

Так как температура в период твердения оказывает наибольшее влияние на прочность на поздних стадиях, временное прекращение про-паривания является полезным. Некоторые сведения о влиянии перерыва в пропаривании на прочность можно получить из рис. 5.34, составленного Саулем по данным Шийделлера и Чэмберлена. Примененный бетон был изготовлен на модифицированном цементе с В/Ц, равном 0,6. Жирная линия показывает рост прочности в бетоне, выдержанном во влажных условиях при комнатной температуре. Пунктиром обозначены данные для различных температур выдерживания в интервале между 37,8 и 85° С, цифры против каждой точки обозначают перерыв пропаривания в часах до того, как была резко повышена температура пропаривания.

Из рис. 5.34 можно видеть, что для каждой температуры выдерживания существует часть кривой, показывающей нормальную степень роста прочности при твердении. Другими словами, после достаточного временного перерыва пропаривания быстрое нагревание не оказывает отрицательного действия. Это временное прекращение составляет примерно 2; 3,5 ибч соответственно для температур 37,8; 54,4; 73,9 и 85° С. Если, однако, бетон подвергать действию более высокой температуры с меньшим перерывом пропаривания, что неблагоприятно влияет на прочность, как показано правой частью каждой пунктирной кривой, эго воздействие более значительно по сравнению с более высокой температурой выдерживания.

На рис. 5.34 показано также, что в течение нескольких часов непосредственно после изготовления рост прочности бетона выше, чем можно было предположить из вычислений зрелости. Это совпадает с более ранним наблюдением, что возраст бетона при высокой температуре является важной характеристикой.

Практические режимы пропаривания выбираются как компромисс между требованиями прочности на ранней и поздней стадиях и обусловливаются также продолжительностью рабочей смены. Цикл пропаривания для данной бетонной смеси определяется экономическими соображениями.

При типичном цикле пропаривание начинается через 3 ч после изготовления, температура поднимается на 4,4° С в час и достигает 54,4— 73,9° С, а затем продолжается в течение заданного периода времени. Бетон на легком заполнителе можно нагревать до 73,9—82,2° С.

Указанные температуры являются температурами пара, но они не обязательно совпадают с температурой пропариваемого бетона. В течение первого часа или двух часов после помещения в камеру температура бетона ниже температуры среды, но позднее в результате тепловыделения при реакции гидратации температура бетона оказывается выше температуры окружающей среды. Можно максимально использовать тепло в камере пропаривания, если пар выпустить раньше и установить длительный период охлаждения. Таким образом, оптимальная программа пропаривания должна включать период медленного повышения температуры, выдержку при максимальной температуре и период охлаждения.

Изменения температуры внутри бетона при пропаривании отличаются от изменений температуры на его поверхности. Повышение температуры в центре происходит медленно, соответственно скорость охлаждения также ниже. Таким образом, площадь под кривой «температура— время» примерно одинакова для внутренних точек и точек, расположенных ближе к поверхности бетонного блока, так что весь бетон имеет одинаковую зрелость. Это было продемонстрировано Росом. На рис. 5.35 показаны расчетные кривые «температура — время» для длинного бетонного блока, подверженного различным температурам на поверхности, при этом влияние теплоты гидратации не учитывалось.

В прошлом можно было наблюдать, что, когда бетон выдерживался при высоких температурах, тепло при гидратации цемента выделялось так быстро, что повышение температуры наблюдалось даже в маленьких образцах. С другой стороны, при выдерживании при обычной температуре влияние теплоты гидратации было заметно только в массивных элементах.

В дополнение к пропариванию применялись и другие способы высокотемпературной обработки бетона. В частности, электрические методы нагревания током, проходящим через арматуру или непосредственно через бетон, оказались успешными. Ток должен быть переменным, поскольку постоянный ток приводит к гидролизу цементной массы.

midas-beton.ru

Пропаривание при атмосферном давлении

Поскольку повышение температуры при твердении бетона повышает интенсивность роста прочности, то достижение заданной прочности может быть ускорено пропариванием бетона в специальных камерах. Когда пар находится при атмосферном давлении, т.е. его температура ниже 100° С, твердение можно считать разновидностью влажного ухода. Выдерживание бетона при высоком давлении (автоклавная обработка) является совершенно другой технологией и рассматривается в следующем разделе. Пропаривание успешно применялось для бетонов, приготовленных на различных портландцементах, но его нельзя применять для бетона на глиноземистом цементе из-за вредного воздействия жары и влаги на прочность этого цемента. Бетон с более низким В/Ц реагирует на пропаривание намного лучше тощих бетонов. Основная цель пропаривания заключается в получении достаточно-высокой прочности на ранней стадии, так как бетонные изделия могут приобрести прочность вскоре после бетонирования. Раскрывать форму или освобождать оснастку предварительного напряжения можно значительно раньше, чем при обычном влажном выдерживании, при этом требуется меньшая производственная площадь для хранения при выдерживании; все это дает экономические преимущества. На практике для многих случаев прочность бетона в более поздние сроки имеет меньшее значение. Из-за характера операций, входящих в процесс пропаривания, оно применяется главным образом для сборных деталей. Пропаривание при низком давлении обычно осуществляют в специальных камерах или тоннелях, через которые бетонные элементы подают на конвейерной ленте. Или же предварительно изготовленные детали покрывают передвижными кожухами или покрышками из пластика, под которые пар подается через гибкие шланги. Учитывая влияние температуры на ранних стадиях твердения на позднейшую прочность, должно быть найдено компромиссное решение между температурами, дающими высокую прочность на ранней стадии и на более поздней стадии твердения. На рис. 5.32 показаны значения прочности бетона, изготовленного на модифицированном цементе с ВЩ, равным 0,55; пропаривание производилось непосредственно после изготовления. Аналогичная проблема возникает при определении скорости повышения температуры в начале пропаривания. Установлено, что если температура 48,9°С достигается за период меньше 2—3 ч или температура 98,9° С — за период меньше 6—7 ч с момента перемешивания, то это отрицательно влияет на рост прочности после первых нескольких часов. Нельзя допускать такой быстрый подъем температуры. Быстрое твердение может привести к потере прочности на одну треть в более позднем возрасте по сравнению с влажным выдерживанием при комнатной температуре. Отрицательное действие быстрого подъема температуры заметнее при более высоком водоцементном отношении в смеси и оно более ощутимо при быстротвердеющем цементе по сравнению с обыкновенным портландцементом. Саул установил, что когда скорость подъема температуры бетона не превышает значений, указанных ранее, то его прочность немного отличается от прочности нормально выдержанного бетона и находится в зоне А на рис. 5.33. Прочность слишком быстро нагреваемого бетона лежит в зоне В. Так как температура в период твердения оказывает наибольшее влияние на прочность на поздних стадиях, временное прекращение про-паривания является полезным. Некоторые сведения о влиянии перерыва в пропаривании на прочность можно получить из рис. 5.34, составленного Саулем по данным Шийделлера и Чэмберлена. Примененный бетон был изготовлен на модифицированном цементе с В/Ц, равном 0,6. Жирная линия показывает рост прочности в бетоне, выдержанном во влажных условиях при комнатной температуре. Пунктиром обозначены данные для различных температур выдерживания в интервале между 37,8 и 85° С, цифры против каждой точки обозначают перерыв пропаривания в часах до того, как была резко повышена температура пропаривания. Из рис. 5.34 можно видеть, что для каждой температуры выдерживания существует часть кривой, показывающей нормальную степень роста прочности при твердении. Другими словами, после достаточного временного перерыва пропаривания быстрое нагревание не оказывает отрицательного действия. Это временное прекращение составляет примерно 2; 3,5 ибч соответственно для температур 37,8; 54,4; 73,9 и 85° С. Если, однако, бетон подвергать действию более высокой температуры с меньшим перерывом пропаривания, что неблагоприятно влияет на прочность, как показано правой частью каждой пунктирной кривой, эго воздействие более значительно по сравнению с более высокой температурой выдерживания. На рис. 5.34 показано также, что в течение нескольких часов непосредственно после изготовления рост прочности бетона выше, чем можно было предположить из вычислений зрелости. Это совпадает с более ранним наблюдением, что возраст бетона при высокой температуре является важной характеристикой. Практические режимы пропаривания выбираются как компромисс между требованиями прочности на ранней и поздней стадиях и обусловливаются также продолжительностью рабочей смены. Цикл пропаривания для данной бетонной смеси определяется экономическими соображениями. При типичном цикле пропаривание начинается через 3 ч после изготовления, температура поднимается на 4,4° С в час и достигает 54,4— 73,9° С, а затем продолжается в течение заданного периода времени. Бетон на легком заполнителе можно нагревать до 73,9—82,2° С. Указанные температуры являются температурами пара, но они не обязательно совпадают с температурой пропариваемого бетона. В течение первого часа или двух часов после помещения в камеру температура бетона ниже температуры среды, но позднее в результате тепловыделения при реакции гидратации температура бетона оказывается выше температуры окружающей среды. Можно максимально использовать тепло в камере пропаривания, если пар выпустить раньше и установить длительный период охлаждения. Таким образом, оптимальная программа пропаривания должна включать период медленного повышения температуры, выдержку при максимальной температуре и период охлаждения. Изменения температуры внутри бетона при пропаривании отличаются от изменений температуры на его поверхности. Повышение температуры в центре происходит медленно, соответственно скорость охлаждения также ниже. Таким образом, площадь под кривой «температура— время» примерно одинакова для внутренних точек и точек, расположенных ближе к поверхности бетонного блока, так что весь бетон имеет одинаковую зрелость. Это было продемонстрировано Росом. На рис. 5.35 показаны расчетные кривые «температура — время» для длинного бетонного блока, подверженного различным температурам на поверхности, при этом влияние теплоты гидратации не учитывалось. В прошлом можно было наблюдать, что, когда бетон выдерживался при высоких температурах, тепло при гидратации цемента выделялось так быстро, что повышение температуры наблюдалось даже в маленьких образцах. С другой стороны, при выдерживании при обычной температуре влияние теплоты гидратации было заметно только в массивных элементах. В дополнение к пропариванию применялись и другие способы высокотемпературной обработки бетона. В частности, электрические методы нагревания током, проходящим через арматуру или непосредственно через бетон, оказались успешными. Ток должен быть переменным, поскольку постоянный ток приводит к гидролизу цементной массы.

vogean.com

Расчет прочности бетона при пропаривании

Пропариванием бетона называется специальный режим его твердения при повышенной температуре и влажной среде. Большую роль в этом режиме также играет давление – для твердения бетона в условиях повышенного давления его помещают в специальные автоклавы. Главной целью пропаривания бетона является увеличение скорости набора прочности. Например, иногда вместо 28 дней нужную прочность можно получить за 24 часа! Однако в виду особенностей метода (пар, высокая температура) его применение ограничено производством сборных конструкций.

Одной из задач экспериментально-расчетного метода определения состава бетона является поиск состава по полученным опытным данным. Представим такую ситуацию – нам необходимо после пропаривания получить прочность бетона равную Rб = 200 кгс/см2. При этом мы сделали два пробных образца по одинаковой технологии с применением следующих материалов:

1) расход цемента Ц1 = 330 кг/м3, воды В1 = 190 л/м3

2) расход цемента Ц2 = 380 кг/м3, воды В2 = 195 л/м3

и для заполнителей (которые в обоих случаях также были одинаковые) – песок кварцевый с истинной плотностью ρист = 2,65 г/см3 и насыпной плотностью ρнас = 1,55 г/см3, щебень с истинной и насыпной плотностями ρист = 2,66 г/см3, ρнас = 1,38 г/см3, крупностью 20 мм и пустотностью α = 0,48. Истинная плотность цемента в обоих случаях равна 3,1 г/см3. После определения прочности каждого из полученных образцов бетона получили следующие данные: первый образец – 160 кгс/см2, второй – 217 кгс/см2. Рассчитаем состав бетона для требуемой прочности – 200 кгс/см2.

Сделаем главное предположение – зависимость прочности бетона от расхода цемента имеет линейный характер (т.е. прямопропорциональная зависимость). Также линейный характер имеет и расход воды в зависимости от расхода цемента. Это означает, что

(R – R1)·( Ц2 – Ц1) = (R2 – R1)·(Ц – Ц1),

где R – прочность бетона, состав которого нужно найти, R1, R2 – прочности опытных образцов. Ц – искомый расход цемента, Ц1, Ц2 – данные расходы цементов.

Формула для расчета расхода воды будет выглядеть аналогичным образом:

(В – В1)·( Ц2 – Ц1) = (В2 – В1)·(Ц – Ц1).

Используя эти две формулы, найдем Ц = 365 кг/м3, В = 193 л/м3.

Для поиска расхода щебня и песка на 1 м3 воспользуемся методом абсолютных объемов – объем бетона равен сумме абсолютных объемов остальных составляющих без учета воздушных пор:

Vц + Vп + Vщ + Vв = Vб = 1000 м3,

или

Ц/ρци + П/ρпи + Щ/ρщи + В = 1000.

Второе уравнение – водноцементнопесчаная смесь заполняет все пустоты между зернами щебня с учетом их обмазки (что учитывается коэффициентом раздвижки, которые зависит от расхода цемента и определяется по специальным таблицам):

Vц + Vп + В = (αVщ)·K (в нашем случае K = 1,42 – см. табл.)

Выразив из этих формул расходы щебня и песка, получим следующие соотношения:

Щ = 1000/(1/ρщи + Kα/ρщн),

П = (1000 – [Ц/ρци + Щ/ρщи + В])·ρпи,

где индексы и, н соответствуют истинной и насыпной характеристикам (в данном случае ‑ плотности).

Коэффициент раздвижки зерен крупного заполнителя (зависит также от песка)

Расход цемента, Ц, кг/м3

Бетон

на щебне

на гравии

250

1,3

1,34

300

1,36

1,42

350

1,42

1,48

400

1,47

1,52

Подставив численные значения, получим:

Щ = 1000/(1/2.66 + 1,42·0,48/1,38) ≈ 1150 кг/м3,

П = [1000 – (193 + 365/3,1 + 1150/2,66)] ≈ 680 кг/м3.

Расчетная плотность полученного бетона будет равна:

ρ = 365 + 193 + 680 + 1150 = 2388 кг/м3,

и, окончательно, состав выразится формулой:

Ц : Щ : П = 1:3,15 : 1,86 при В/Ц = 0,53.

 

betonvtomske.ru


Смотрите также