Нормативные и расчетные значения характеристик бетона. Расчетные характеристики бетона


Нормативные и расчетные характеристики бетона

2.8. Нормативными сопротивлениями бетона являются сопро­тив­ление осевому сжатию призм (призменная прочность) Rbn и сопротивление осевому растяжению Rbtn.

Нормативное сопротивление Rbn принято равным

Rbn = (0.85 - 0.00135 В) В, (10)

но не менее 0,8 В, где В - в МПа.

Нормативное сопротивление Rbtn принято равным

(11)

где B - в МПа.

Нормативные сопротивления бетона Rbn с округлением в зависимости от класса бетона по прочности на сжатие приведены в табл. 8.

2.9. Расчетные сопротивления бетона для предельных состояний первой и второй групп определяются путем деления нормативных сопротивлений на соответствующие коэффициенты надежности по бетону при сжатии gbc или при растяжении gbt, принимаемые по табл. 9.

Значения расчетных сопротивлений бетона в зависимости от класса бетона по прочности на сжатие для предельных состояний первой группы Rb и Rbt, приведены (с округлением) в табл. 10, для предельных состояний второй группы Rb.ser и Rbt.ser - в табл. 8.

2.10. Расчетные сопротивления бетона для предельных состояний первой группы Rb, и Rbt, приведенные в табл. 10, следует снижать (или повышать) путем умножения на коэффициенты условий работы бетона ¡bc учитывающие особенности свойств бетона, длительность действия нагрузки и ее многократную повторяемость, условия и стадию работы конструкций, способ их изготовления, размеры сечения и т. п. Значения коэффициентов ¡bi, приведены в табл. 11.

Таблица 8

Вид

сопротивления

Нормативные сопротивления бетона Rbn, Rbtn и расчетные сопротивления бетона для предельных состояний второй группы Rb/ser и Rbt.ser при классе бетона по прочности на сжатие

В10

В12,5

В15

В20

В25

В30

В35

В40

В45

Сжатие осевое (призменная прочность) Rbn и Rb.ser

8,4

85,7

10,4

106

12,4

127

16,5

168

20,4

208

24,3

248

28,1

286

32,0

326

35,5

362

Растяжение осевое Rbtn и Rbt.ser

0,9

9,2

1,05

10,7

1,15

11,7

1,40

14,3

1,60

16,3

1,75

17,8

1,90

19,4

2,0

20,4

2,10

21,4

П р и м е ч а н и е: Над чертой указаны значения в МПа, под чертой - в кгс/см2.

Таблица 9

Группа предельных

Коэффициенты надежности по бетону

состояний

при сжатии gbc

при растяжении gbt

Первая

1,35

1,55

Вторая

1,00

1,00

2.11. Расчетные сопротивления при растяжении Rbt.ser предельных состояний второй группы при расчете по деформациям следует увеличивать путем умножения на коэффициент условий работы бетона gbt1 =1,4, а при расчете по образованию нормальных и наклонных трещин от многократно повторных нагрузок, а также при расчете по образованию наклонных трещин от любых нагрузок - уменьшать путем умножения на коэффициент условий работы бетона соответственно gb1, и gb4, значения которых приведены в табл. 11 и 12.

2.12. Значения начального модуля упругости бетона Eb, при сжатии и растяжении принимаются по табл. 13.

Для незащищенных от солнечной радиации конструкций, предназначенных для эксплуатации в климатическом подрайоне IVA согласно СНиП 2.01.01-82, значения Еb, указанные в табл. 13, следует умножать на коэффициент 0,85.

Для бетона, подвергающегося попеременному замораживанию и оттаиванию, значения Еb, указанные в табл. 13, следует умножать на коэффициент условий работы бетона gb6, принимаемый по табл. 17 СНиП 2.03.01-84.

При наличии данных о составе бетона, условиях изготовления и т. д. допускается принимать другие значения Еb, согласованные в установленном порядке.

2.13. Предельные значения характеристики ползучести бетона jb следует определять в зависимости от влажностного режима эксплуатации конструкций по формуле

(12)

где jьт - предельные значения характеристики ползучести бетона при влажности окружающей воздушной среды 40-75 %, принимаемые по табл. 14 настоящих норм;

h2 - коэффициент, принимаемый равным при относительной влаж­ности внутреннего воздуха, %:

свыше 75 или во влажной зоне. . . . . . . . . . . . . . . . . . . . . . . 1,1

от 40 до 75 или в зоне нормальной влажности. . . . . . . . . .1,0

до 40 или в сухой зоне. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,9

2.14. Коэффициент линейной температурной деформации бетона abt при изменении температур от минус 50 до плюс 50 °С следует принимать равным 110-5 °С-1.

При наличии данных о минералогическом составе заполнителей, составе и водонасыщении бетона и т. п. допускается принимать другие значения abt, обоснованные в установленном порядке.

Для расчетной температуры ниже минус 50 С величину abt следует принимать по экспериментальным данным.

2.15. Начальный коэффициент поперечной деформации бетона (коэффициент Пуассона) n следует принимать равным 0,2, а модуль сдвига бетона G- равным 0,4 соответствующих значений Еb, указанных в табл. 13.

Таблица 10

Вид

сопротив­ления

Расчетные сопротивления бетона для предельных состояний первой группы Rb и Rbt при классе бетона по прочности на сжатие

В10

В12,5

В15

В20

В25

В30

В35

В40

В45

Сжатие осевое (призменная прочность) Rb

6,2

63

7,7

84

9,2

94

12,2

124

15,1

154

18,0

184

20,8

212

23,7

242

26,3

268

Растяжение

осевое Rbt

0,58

5,9

0,68

6,9

0,74

7,5

0,90

9,2

1,03

10,5

1,13

11,5

1,23

12,5

1,29

13,1

1,35

13,8

П р и м е ч а н и е. Над чертой указаны значения в МПа, под чертой - в кгс/см2.

Таблица 11

Коэффициенты условий работы бетона

Факторы, обусловливающие введение коэффициентов условий работы бетона

условное обозна­чение

числовое значение

1. Многократно повторяющаяся нагру­зка

gb1

См. табл. 12

2. Длительность действия нагрузки:

а) при учете постоянных, длительных и кратковременных нагрузок, кроме наг­рузок непродолжительного действия, суммарная длительность которых за пе­риод эксплуатации мала (например, кра­новые нагрузки; нагрузки от транспорт­ных средств; ветровые нагрузки; нагру­зки, возникающие при изготовлении, транспор­тировании и возведении и т.п.), а также при учете особых нагрузок, выз­ванных деформациями просадочных, набухающих, вечномерзлых и подобных грунтов;

gb2

0,85

б) при учете в рассматриваемом сочета­нии кратковременных нагрузок непро­должи­тельного действия или особых на­грузок, не указанных в поз. 2а

1,00

3. Бетонирование в вертикальном поло­жении при высоте слоя бетонирования свыше 1,5 м

gb3

0,85

4. Влияние двухосного сложного напря­женного состояния „сжатие - растяже­ние" на прочность бетона

gb4

См. п.4.11

СНиП 2.03.01-84

5. Попеременное замораживание и отта­ивание

gb6

См. табл. 17

СНиП 2.03.01-84

6. Эксплуатация не защищенных от сол­нечной радиации конструкций в клима­тическом подрайоне IVA согласно СНиП 2.01.01-82

gb7

0,85

7. Бетонные конструкции

gb9

0,90

8. Стыки сборных элементов при тол­щине шва менее 1/5 наименьшего размера сечения элемента и менее 10 см

gb12

1,15

9. Сжатые элементы с содержанием ар­матуры S менее 0,3 % площади сечения бетона при эксцентриситете продоль­ного усилия е0 > 0,3h

gb13

0,90

10. Простенки площадью сечения менее 0,1 м2 в стеновых панелях

gb14

0,80

11. Особенности упругопластических свойств бетона классов:

В30, В35

gb15

0,95

В40

0,90

В45

0,85

12. Неравномерность распределения прочности бетона всех классов по высоте сечения конструкций

gb16

0,85

Примечания. Коэффициенты условий работы бетона по поз. 1, 2, 5, 6, 7 должны учитываться при определении расчетных сопротивлений бетона Rb, и Rbt по поз. 4 - при определении Rbt,ser а по остальным позициям - только при определении Rb.

2. Для конструкций, находящихся под действием многократно повторяющейся нагрузки, коэффициент gb2 учитывается при расчете по прочности, а gb1- при расчете на выносливость и по образованию трещин.

3. При расчете конструкций в стадии предварительного обжатия коэффициент gb2принимается равным единице.

4. Коэффициенты условий работы бетона вводятся независимо друг от друга, но при этом их произведение должно быть не менее 0,45.

Таблица 12

Коэффициенты асиммет­рии цикла напряжений в бетоне rb

0‑0,1

0,2

0,3

0,4

0,5

0,6

0,7

Коэффициент gb1

0,50

0,55

0,60

0,70

0,75

0,80

0,85

В табл. 12

где и ‑ соответственно наименьшее и наибольшее напряжения в бетоне в пределах цикла изменения нагрузки, определяемые согласно п. 3.47 СНиП 2.03.01-84 с учетом требований п. 3.14 настоящих норм.

Таблица 13

Бетон

Начальные модули упругости при сжатии и растяжении Eb×10-3 при классе бетона по прочности на сжатие

В10

B12,5

B15

B20

B25

В30

В35

В40

В45

На известково-песча­ном вяжущем

9,9

101

11,9

121

13,8

141

16,5

168

18,8

192

20,7

211

22,0

224

23,0

235

23,6

241

На известково-шлако­вом вяжущем

11,8

120

14,2

145

16,5

168

19,8

202

22,5

229

24,8

253

26,4

269

27,6

281

28,3

288

Примечания: 1. Над чертой указаны значения Eb×10-3 в МПа, под чертой ‑ в кгс/см2.

2. При расчете слоистых конструкций по предельным состояниям первой группы в тех случаях, когда в расчете учитываются слои не только из плотного силикатного бетона, но и из других материалов, приведенные в данной таблице значения модуля упругости плотного силикатного бетона следует увеличивать или уменьшать на 30 % исходя из отклонения в сторону, неблагоприятную для расчета.

Таблица 14

Бетон

Предельные значения характеристики ползучести jbm при классе бетона по прочности на сжатие

В10

В12,5

B15

B20

B25

B30

B35

В40

B45

На известково-песчаном вяжущем

2,00

2,00

1,75

1,50

1,50

1,25

1,25

1,00

1,00

Примечания: 1. Для плотного силикатного бетона на известково-шлаковом вяжущем предельное значение характеристики ползучести jbm следует принимать для рассмотренных классов бетона равным единице.

2. При наличии данных о составе бетона в условиях изготовления конструкций допускается принимать другие значения jb, согласованные в установленном порядке.

3. Влажность воздуха окружающей среды следует определять согласно указаниям п. 1.8 СНиП 2.03.01-84.

studfiles.net

Нормативные и расчетные характеристики бетона

2.6. Нормативные значения сопротивления бетона осевому сжатию (призменная прочность) Rb,n и осевому растяжению (при назначении класса по прочности на сжатие) Rbt,n принимают в зависимости от класса бетона В согласно табл. 2.1.

Таблица 2.1.

Вид сопротивления

Нормативные сопротивления бетона Rb,n и Rbt,nи расчетные значения сопротивления бетона для предельных состояний второй группы Rb,ser и Rbt,ser МПа (кгс/см2) при классе бетона по прочности на сжатие

В10

В15

Б20

В25

В30

В35

В40

В45

В50

В55

В60

Сжатие осевое Rb,n, Rb,ser

7,5 (76,5)

11,0 (112)

15,0 (153)

18,5 (188)

22,0 (224)

25,5 (260)

29,0 (296)

32,0 (326)

36,0 (367)

39,5 (403)

43,0 (438)

Растяжение Rbt,n  Rbt,ser

0,85 (8,7)

1,10 (11,2)

1,35 (13,8)

1,55 (15,8)

1,75 (17,8)

1,95 (19,9)

2,10 (21,4)

2,25 (22,9)

2,45 (25,0)

2,60 (26,5)

2,75 (28,0)

При назначении класса бетона по прочности на осевое растяжение Вt нормативные сопротивления бетона осевому растяжению Rbt,n в МПа принимают равными числовой характеристике класса бетона на осевое растяжение.

2.7. Расчетные сопротивления бетона осевому сжатию Rb и осевому растяжению Rbt для предельных состояний первой группы определяют по формулам:

(2.1)

где γь - коэффициент надежности по бетону при сжатии, принимаемый равным 1,3;

γbt -коэффициент надежности по бетону при растяжении, принимаемый равным:

1,5 - при назначении класса бетона по прочности на сжатие;

1,3 - при назначении класса бетона по прочности на растяжение.

Расчетные сопротивления бетона Rb и Rbt (с округлением) в зависимости от класса бетона по прочности на сжатие и осевое растяжение приведены соответственно в табл. 2.2и2.3

Расчетные значения сопротивления бетона осевому сжатию Rb.ser и осевому растяжению Rbt,ser для предельных состояний второй группы принимают равными соответствующим нормативным сопротивлениям, т.е. вводят в расчет с коэффициентом надежности по бетону γь = γbt = 1,0. Значения Rb.ser и Rbt,ser приведены в табл. 2.1.

Таблица 2.2

Вид сопротивления

Расчетные сопротивления бетона для предельных состояний первой группы Rb и Rbt, МПа (кгс/см2) при классе бетона по прочности на сжатие

В10

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

Сжатие осевое, Rb

6,0 (61,2)

8,5 (86,6)

11,5 (117)

14,5 (148)

17,0 (173)

19,5 (199)

22,0 (224)

25,0 (255)

27,5 (280)

30,0 (306)

33,0 (33б)

Растяжение осевое, Rbt

0,56 (5,7)

0,75 (7,6)

0,90 (9,2)

1,05 (10,7)

1,15 (11,7)

1,30 (13,3)

1,40 (14,3)

1,50 (15,3)

1,60 (16,3)

1,70 (17,3)

1,80 (18,3)

Таблица 2.3

Расчетные сопротивления бетона на осевое растяжения для предельных состояний первой группы Rbt, МПа (кгс/см2) при классе бетона по прочности на осевое растяжение

Вt0,8

Вt1,2

Вt1,6

Вt2,0

Вt2,4

Вt2,8

Вt3,2

0,62 (6,3)

0,93 (9,5)

1,25 (12,7)

1,55 (15,8)

1,85 (18,9)

2,15 (21,9)

2,45 (25,0)

2.8. В необходимых случаях расчетные сопротивления бетона умножаются на следующие коэффициенты условий работы γbi :

а) γb1 = 0,9 - для бетонных и железобетонных конструкций при действии только постоянных и длительных нагрузок, вводимый к расчетным значениям Rb и Rbt;

б) γb2 = 0,9 - для бетонных конструкций, вводимый к расчетному значению Rb;

в) γb3 = 0,9 - для бетонных и железобетонных конструкций, бетонируемых в вертикальном, вводимый к расчетному значению Rb.

2.9. Значение начального модуля упругости бетона при сжатии и растяжении Eb принимают в зависимости от класса бетона по прочности на сжатие В согласно табл. 2.4

2.10. Значения коэффициента поперечной деформации бетона (коэффициента Пуассона) допускается принимать vb,P = 0,2.

Модуль сдвига бетона G принимают равным 0,4 соответствующего значения Eb, указанного в табл. 2.4.

2.11. Значения коэффициента линейной температурной деформации бетона при изменении температуры от минус 40 до плюс 50°С принимают αbt = 1·10-5 °С-1.

Таблица 2.4

Значения начального модуля упругости бетона при сжатии и растяжении Eb·10-3, МПа (кгс/см2), при классе бетона по прочности на сжатие

В10

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

19,0 (194)

24,0 (245)

27,5 (280)

30,0 (306)

32,5 (331)

34,5 (352)

36,0 (367)

37,0 (377)

38,0 (387)

39,0 (398)

39,5 (403)

2.12. Для определения массы железобетонной или бетонной конструкции плотность бетона принимается равной 2400 кг/м3.

Плотность железобетона при содержании арматуры 3% и менее может приниматься равной 2500 кг/м3; при содержании арматуры свыше 3% плотность определяется как сумма масс бетона и арматуры на единицу объема железобетонной конструкции. При этом масса 1 м длины арматурной стали принимается по приложению 1, а масса листовой и фасонной стали - по государственным стандартам.

При определении нагрузки от собственного веса конструкции удельный вес ее в кН/м3 допускается принимать равным 0,01 плотности в кг/м3.

2.13. Значения относительных деформаций бетона, характеризующих диаграмму состояния сжатого бетона (εbo, εb1,red , εb2) и растянутого бетона (εbto, εbt1,red , εbt2), а также значения коэффициента ползучести бетона φb,cr приведены в пп. 4.27и4.23.

studfiles.net

Нормативные и расчетные характеристики бетона

2.6. Нормативные значения сопротивления бетона осевому сжатию (призменная прочность) Rb,n и осевому растяжению (при назначении класса по прочности на сжатие) Rbt,n принимают в зависимости от класса бетона В согласно табл. 2.1.

Таблица 2.1.

Вид сопротивления

Нормативные сопротивления бетона Rb,n и Rbt,nи расчетные значения сопротивления бетона для предельных состояний второй группы Rb,ser и Rbt,ser МПа (кгс/см2) при классе бетона по прочности на сжатие

В10

В15

Б20

В25

В30

В35

В40

В45

В50

В55

В60

Сжатие осевое Rb,n, Rb,ser

7,5 (76,5)

11,0 (112)

15,0 (153)

18,5 (188)

22,0 (224)

25,5 (260)

29,0 (296)

32,0 (326)

36,0 (367)

39,5 (403)

43,0 (438)

Растяжение Rbt,n  Rbt,ser

0,85 (8,7)

1,10 (11,2)

1,35 (13,8)

1,55 (15,8)

1,75 (17,8)

1,95 (19,9)

2,10 (21,4)

2,25 (22,9)

2,45 (25,0)

2,60 (26,5)

2,75 (28,0)

При назначении класса бетона по прочности на осевое растяжение Вt нормативные сопротивления бетона осевому растяжению Rbt,n в МПа принимают равными числовой характеристике класса бетона на осевое растяжение.

2.7. Расчетные сопротивления бетона осевому сжатию Rb и осевому растяжению Rbt для предельных состояний первой группы определяют по формулам:

(2.1)

где γь - коэффициент надежности по бетону при сжатии, принимаемый равным 1,3;

γbt -коэффициент надежности по бетону при растяжении, принимаемый равным:

1,5 - при назначении класса бетона по прочности на сжатие;

1,3 - при назначении класса бетона по прочности на растяжение.

Расчетные сопротивления бетона Rb и Rbt (с округлением) в зависимости от класса бетона по прочности на сжатие и осевое растяжение приведены соответственно в табл. 2.2 и 2.3

Расчетные значения сопротивления бетона осевому сжатию Rb.ser и осевому растяжению Rbt,ser для предельных состояний второй группы принимают равными соответствующим нормативным сопротивлениям, т.е. вводят в расчет с коэффициентом надежности по бетону γь = γbt = 1,0. Значения Rb.ser и Rbt,ser приведены в табл. 2.1.

Таблица 2.2

Вид сопротивления

Расчетные сопротивления бетона для предельных состояний первой группы Rb и Rbt, МПа (кгс/см2) при классе бетона по прочности на сжатие

В10

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

Сжатие осевое, Rb

6,0 (61,2)

8,5 (86,6)

11,5 (117)

14,5 (148)

17,0 (173)

19,5 (199)

22,0 (224)

25,0 (255)

27,5 (280)

30,0 (306)

33,0 (33б)

Растяжение осевое, Rbt

0,56 (5,7)

0,75 (7,6)

0,90 (9,2)

1,05 (10,7)

1,15 (11,7)

1,30 (13,3)

1,40 (14,3)

1,50 (15,3)

1,60 (16,3)

1,70 (17,3)

1,80 (18,3)

Таблица 2.3

Расчетные сопротивления бетона на осевое растяжения для предельных состояний первой группы Rbt, МПа (кгс/см2) при классе бетона по прочности на осевое растяжение

Вt0,8

Вt1,2

Вt1,6

Вt2,0

Вt2,4

Вt2,8

Вt3,2

0,62 (6,3)

0,93 (9,5)

1,25 (12,7)

1,55 (15,8)

1,85 (18,9)

2,15 (21,9)

2,45 (25,0)

2.8. В необходимых случаях расчетные сопротивления бетона умножаются на следующие коэффициенты условий работы γbi :

а) γb1 = 0,9 - для бетонных и железобетонных конструкций при действии только постоянных и длительных нагрузок, вводимый к расчетным значениям Rb и Rbt;

б) γb2 = 0,9 - для бетонных конструкций, вводимый к расчетному значению Rb;

в) γb3 = 0,9 - для бетонных и железобетонных конструкций, бетонируемых в вертикальном, вводимый к расчетному значению Rb.

2.9. Значение начального модуля упругости бетона при сжатии и растяжении Eb принимают в зависимости от класса бетона по прочности на сжатие В согласно табл. 2.4

2.10. Значения коэффициента поперечной деформации бетона (коэффициента Пуассона) допускается принимать vb,P = 0,2.

Модуль сдвига бетона G принимают равным 0,4 соответствующего значения Eb, указанного в табл. 2.4.

2.11. Значения коэффициента линейной температурной деформации бетона при изменении температуры от минус 40 до плюс 50°С принимают αbt = 1·10-5 °С-1.

Таблица 2.4

Значения начального модуля упругости бетона при сжатии и растяжении Eb·10-3, МПа (кгс/см2), при классе бетона по прочности на сжатие

В10

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

19,0 (194)

24,0 (245)

27,5 (280)

30,0 (306)

32,5 (331)

34,5 (352)

36,0 (367)

37,0 (377)

38,0 (387)

39,0 (398)

39,5 (403)

2.12. Для определения массы железобетонной или бетонной конструкции плотность бетона принимается равной 2400 кг/м3.

Плотность железобетона при содержании арматуры 3% и менее может приниматься равной 2500 кг/м3; при содержании арматуры свыше 3% плотность определяется как сумма масс бетона и арматуры на единицу объема железобетонной конструкции. При этом масса 1 м длины арматурной стали принимается по приложению 1, а масса листовой и фасонной стали - по государственным стандартам.

При определении нагрузки от собственного веса конструкции удельный вес ее в кН/м3 допускается принимать равным 0,01 плотности в кг/м3.

2.13. Значения относительных деформаций бетона, характеризующих диаграмму состояния сжатого бетона (εbo, εb1,red , εb2) и растянутого бетона (εbto, εbt1,red , εbt2), а также значения коэффициента ползучести бетона φb,cr приведены в пп. 4.27 и 4.23.

studfiles.net

Нормативные и расчетные значения характеристик бетона

2.6.Основными прочностными характеристиками бетона являются нормативные значения:

сопротивления бетона осевому сжатию (призменная прочность) Rb,n;

сопротивления бетона осевому растяжению Rbt,n.

Нормативные значения сопротивления бетона Rb,n и Rbt,nв зависимости от класса бетона В даны в табл.2.3

Таблица 2.3

Вид сопротивления

Нормативные значения сопротивления бетона Rb,nиRbt,nи расчетные значения сопротивления бетона для предельных состояний второй группыRb,serиRbt,ser, МПа (кгс/см2), при классе бетона по прочности на сжатие

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

Сжатие осевое (призменная прочность) Rb,n,Rb,ser

11,0 (112)

15,0 (153)

18,5 (188)

22,0 (224)

25,5 (260)

29,0 (296)

32,0 (326)

36,0 (367)

39,5 (403)

43,0 (438)

Растяжение осевое Rbt,n,Rbt,ser

1,10 (11,2)

1,35 (13,8)

1,55 (15,8)

1,75 (17,8)

1,95 (19,9)

2,10 (21,4)

2,25 (22,9)

2,45 (25,0)

2,60 (26,5)

2,75 (28,0)

2.7.Расчетные значения сопротивления бетона осевому сжатию и осевому растяжению для предельных состояний первой группыRb иRbtопределяются делением нормативных сопротивлений на коэффициенты надежности по бетону, принимаемые равными: при сжатии γb= 1,3; при растяжении γbt= 1,5.

Расчетные значения сопротивления бетона осевому сжатию и осевому растяжению для предельных состояний второй группы Rb,serиRbt,serпринимаются равными нормативными сопротивлениямиRb,nиRbt,n.

Расчетные значения сопротивления бетона Rb,Rbt,Rb,serиRbt,ser(с округлением) в зависимости от их классов по прочности на сжатие приведены: для предельных состояний первой группы - в табл.2.4, второй группы - в табл.2.3.

Таблица 2.4

Вид сопротивления

Расчетные значения сопротивления бетона для предельных состояний первой группы RbиRbt,МПа (кгс/см2), при классе бетона по прочности на сжатие

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

Сжатие осевое (призменная прочность) Rb

8,5 (86,6)

11,5 (117)

14,5 (148)

17,0 (173)

19,5 (199)

22,0 (224)

25,0 (255)

27,5 (280)

30,0 (306)

33,0 (336)

Растяжение осевое Rbt

0,75 (7,6)

0,90 (9,2)

1,05 (10,7)

1,15 (11,7)

1,30 (13,3)

1,40 (14,3)

1,50 (15,3)

1,60 (16,3)

1,70 (17,3)

1,80 (18,3)

2.8.При расчете на действие только постоянных и временных длительных нагрузок расчетные сопротивления бетонаRbиRbtумножаются на коэффициент условий работы γb1= 0,9.

2.9.Значения начального модуля упругости бетона при сжатии и растяжении принимают в зависимости от класса бетона по прочности на сжатие В согласно табл.2.5.

Таблица 2.5

Значения начального модуля упругости бетона при сжатии и растяжении Eb· 10-3, МПа (кгс/см2), при классе бетона по прочности на сжатие

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

24,0 (245)

27,5 (280)

30,0 (306)

32,5 (331)

34,5 (352)

36,0 (367)

37,0 (377)

38,0 (387)

39,0 (398)

39,5 (403)

При продолжительном действии нагрузки значение начального модуля деформаций бетона определяют по формуле

                                                                     (2.1)

где φb,cr-коэффициент ползучести, принимаемый в зависимости от относительной влажности воздуха и класса бетона согласно табл. 2.6.

Таблица 2.6

Относительная влажность воздуха окружающей среды, %

Значения коэффициента ползучести φb,crпри классе бетона на сжатие

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

выше 75 (повышенная)

2,4

2,0

1,8

1,6

1,5

1,4

1,3

1,2

1,1

1,0

40 - 75 (нормальная)

3,4

2,8

2,5

2,3

2,1

1,9

1,8

1,6

1,5

1,4

ниже 40 (пониженная)

4,8

4,0

3,6

3,2

3,0

2,8

2,6

2,4

2,2

2,0

Примечание. Относительную влажность воздуха окружающей среды принимают по СНиП 23-01-99как среднюю месячную относительную влажность наиболее теплого месяца для района строительства.

2.10.Значения коэффициента поперечной деформации бетона (коэффициент Пуассона) допускается приниматьvb,p= 0,2, а модуль сдвига бетонаG= 0,4Eb.

2.11. Значения коэффициента линейной температурной деформации бетона при изменении температур от минус 40 до плюс 50 °С принимаются αb,t= 1 · 10-5°С.

2.12. Для определения массы железобетонной конструкции плотность тяжелого бетона принимается равной 2400 кг/м3. Плотность железобетона при содержании арматуры 3 % и менее может приниматься равной 2500 кг/м3, а при содержании арматуры более 3 % плотность определяется как сумма масс бетона и арматуры на единицу объема железобетонной конструкции. При этом масса 1 м арматурной стали принимается по приложению1, а полосовой, угловой и фасонной стали - по государственным стандартам.

При определении нагрузки от собственного веса удельный вес конструкции в кН/м3допускается принимать равным 0,01 от плотности в кг/м3.

2.13. Значения относительных деформаций бетона, характеризующих диаграмму состояния сжатого бетона (εb1,red, εb2) и растянутого бетона (εbt1,red, εbt2) приведены в пп.3.26и4.7.

studfiles.net

Нормативные и расчетные значения характеристик бетона

2.6. Основными прочностными характеристиками бетона являются нормативные значения:

сопротивления бетона осевому сжатию (призменная прочность) Rb,n;

сопротивления бетона осевому растяжению Rbt,n.

Нормативные значения сопротивления бетона Rb,nиRbt,nв зависимости от класса бетона В даны в табл. 2.3

Таблица 2.3

Вид сопротивления

Нормативные значения сопротивления бетона Rb,nиRbt,nи расчетные значения сопротивления бетона для предельных состояний второй группыRb,serиRbt,ser, МПа (кгс/см2), при классе бетона по прочности на сжатие

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

Сжатие осевое (призменная прочность) Rb,n,Rb,ser

11,0

(112)

15,0

(153)

18,5

(188)

22,0

(224)

25,5

(260)

29,0

(296)

32,0

(326)

36,0

(367)

39,5

(403)

43,0

(438)

Растяжение осевое Rbt,n,Rbt,ser

1,10

(11,2)

1,35

(13,8)

1,55

15,8)

1,75

(17,8)

1,95

(19,9)

2,10

(21,4)

2,25

(22,9)

2,45

(25,0)

2,60

(26,5)

2,75

(28,0)

2.7. Расчетные значения сопротивления бетона осевому сжатию и осевому растяжению для предельных состояний первой группы RbиRbtопределяются делением нормативных сопротивлений на коэффициенты надежности по бетону, принимаемые равными: при сжатииb=1,3; при растяженииbt= 1,5.

Расчетные значения сопротивления бетона осевому сжатию и осевому растяжению для предельных состояний второй группы Rb,serиRbt,serпринимаются равными нормативными сопротивлениямиRb,nиRbt,n.

Расчетные значения сопротивления бетона Rb,Rbt,Rb,serиRbt,ser(с округлением) в зависимости от их классов по прочности на сжатие приведены: для предельных состояний первой группы - в табл. 2.4, второй группы - в табл. 2.3

Таблица 2.4

Вид сопротивления

Расчетные значения сопротивления бетона для предельных состояний первой группы RbиRbt, МПа (кгс/см2), при классе бетона по прочности на сжатие

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

Сжатие осевое (призменная прочность) Rb

8,5

(86,6)

11,5

(117)

14,5

(148)

17,0

(173)

19,5

(199)

22,0

(224)

25,0

(255)

27,5

(280)

30,0

(306)

33,0

(336)

Растяжение осевое Rbt

0,75

(7,6)

0,90

(9,2)

1,05

(10,7)

1,15

(11,7)

1,30

(13,3)

1,40

(14,3)

1,50

(15,3)

1,60

(16,3)

1,70

(173)

1,80

(18,3)

2.8. При расчете на действие только постоянных и временных длительных нагрузок расчетные сопротивления бетона RbиRbtумножаются на коэффициент условий работыb1= 0,9.

2.9. Значения начального модуля упругости бетона при сжатии и растяжении принимают в зависимости от класса бетона по прочности на сжатие В согласно табл. 2.5

Таблица 2.5

Значения начального модуля упругости бетона при сжатии и растяжении Eb·10-3, МПа (кгс/см2), при классе бетона по прочности на сжатие

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

24,0

(245)

27,5

(280)

30,0

(306)

32,5

(331)

34,5

(352)

36,0

(367)

37,0

(377)

38,0

(387)

39,0

(398)

39,5

(403)

При продолжительном действии нагрузки значение начального модуля деформаций бетона определяют по формуле

, (2.1)

где b,cr- коэффициент ползучести, принимаемый в зависимости от относительной влажности воздуха и класса бетона согласно табл. 2.6

Таблица 2.6

Относительная влажность воздуха окружающей среды, %

Значения коэффициента ползучести b,crпри классе бетона на сжатие

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

выше 75 (повышенная)

2,4

2,0

1,8

1,6

1,5

1,4

1,3

1,2

1,1

1,0

40-75 (нормальная)

3,4

2,8

2,5

2,3

2,1

1,9

1,8

1,6

1,5

1,4

ниже 40 (пониженная)

4,8

4,0

3,6

3,2

3,0

2,8

2,6

2,4

2,2

2,0

Примечание. Относительную влажность воздуха окружающей среды принимают по СНиП 23-01-99 как среднюю месячную относительную влажность наиболее теплого месяца для района строительства.

2.10. Значения коэффициента поперечной деформации бетона (коэффициент Пуассона) допускается принимать vb,p= 0,2, а модуль сдвига бетонаG= 0,4Eb.

2.11. Значения коэффициента линейной температурной деформации бетона при изменении температур от минус 40 до плюс 50 °С принимают b,t= 1·10-5°C.

2.12. Для определения массы железобетонной конструкции плотность тяжелого бетона принимается равной 2400 кг/м3. Плотность железобетона при содержании арматуры 3% и менее может приниматься равной 2500 кг/м3, а при содержании арматуры более 3% плотность определяется как сумма масс бетона и арматуры на единицу объема железобетонной конструкции. При этом масса 1 м арматурной стали принимается по приложению 1, а полосовой, угловой и фасонной стали - по государственным стандартам.

При определении нагрузки от собственного веса удельный вес конструкции в кН/м3допускается принимать равным 0,01 от плотности в кг/м3.

2.13. Значения относительных деформаций бетона, характеризующих диаграмму состояния сжатого бетона (b1,red,b2) и растянутого бетона (bt1,red,bt2) приведены в пп. 3.26 и 4.7.

studfiles.net

Нормативные и расчетные характеристики бетона

2.9 (2.11). Нормативными сопротивлениями бетона являются сопротивление осевому сжатию призм (призменная прочность) Rbn и сопротивление осевому растяжению Rbtn.

2.10. Нормативные сопротивления бетона сжатию Rbn и нормативные сопротивления бетона растяжению Rbtn (с округлением) в зависимости от класса бетона по прочности и на сжатие В приведены в табл. 4.

Таблица 4

Сопро­тивление

Нормативные сопротивления ячеистого бетона сжатию Rbn и растяжению Rbtn; расчетные сопротивления для предельных состояний второй группы Rb,ser и Rbt,ser, МПа, при классе бетона по прочности на сжатие

В1

В1,5

В2

В2,5

В3,5

В5

В7,5

В10

В12,5

В15

Сжатие осевое (призмен­ная прочность) Rbn и Rb,ser

0,95 9,69

1,40 14,3

1,90 19,4

2,4 24,5

3,3 33,7

4,60 46,9

6,9 70,4

9,0 91,8

10,5 107

11,5 117

Растяжение осевое Rbtn и Rbt,ser

0,14 1,43

0,22 2,24

0,26 2,65

0,31 3,16

0,41 4,18

0,55 5,61

0,63 6,42

0,89 9,08

1,00 10,2

1,05 10,7

П р и м е ч а н и я. 1. Над чертой приведены расчетные сопротивления в МПа, под чертой - расчетные сопротивления в кгс/см2.

2. Величины нормативных сопротивлений ячеистых бетонов даны для состояния средней влажности ячеистого бетона 10 % (по массе).

2.11. Расчетные сопротивления бетона для предельных состояний первой и второй групп определяются путем деления нормативных сопротивлений на соответствующие коэффициенты надежности по бетону при сжатии gbc или при растяжении gbt , принимаемые по табл. 5.

Таблица 5

Расчет конструкций по предельным состояниям групп

первой

второй

gbc

gbt

gbc

gbt

1,5

2,3

1,0

1,0

Расчетные сопротивления бетона для предельных состояний второй группы Rb,ser и Rbt,ser вводят и расчет с коэффициентом условий работы бетона gbi = 1.

Значения расчетных сопротивлений в зависимости от класса бетона для предельных состояний первой группы приведены в табл. 6, для предельных состояний второй группы — в табл. 4.

Таблица 6

Сопро-тивление

Расчетные сопротивления ячеистого бетона для предельных состояний первой группы Rb и Rbt, МПа, при классе бетона по прочности на сжатие

В1

В1,5

В2

В2,5

В3,5

В5

В7,5

В10

В12,5

В15

Сжатие осевое (призмен­ная прочность) Rb

0,63 6,42

0,95 9,69

1,3 13,3

1,6 16,1

2,2 22,4

3,1 31,6

4,6 46,9

6,0 61,2

7,0 71,4

7,7 78,5

Растяжение осевое Rbt

0,06 0,612

0,09 0,918

0,12 1,22

0,14 1,43

0,18 1,84

0,24 2,45

0,28 2,86

0,39 4,0

0,44 4,49

0,46 4,69

П р и м е ч а н и я. 1. Над чертой указаны расчетные сопротивления в МПа, под чертой - в кгс/см2.

2. Значения расчетных сопротивлений ячеистых бетонов даны для состояния средней влажности ячеистого бетона 10 % (по массе).

Расчетные сопротивления бетона для предельных состояний первой группы Rb и Rbt, приведенные в табл. 6, снижаются (или повышаются) путем умножения на коэффициенты условий работы бетона gbi, учитывающие особенности свойств бетона, длительность действия нагрузки, условия и стадии работы конструкций и т.п. согласно табл. 7.

Таблица 7

Факторы, обуславливающие введение

Коэффициенты условий работы бетона

коэффициентов условий работы бетона

условные обозначения

значение

1. Длительность действия нагрузки:

а) при учете постоянных, длительных и кратковременных нагрузок, кроме нагрузок непродолжительного действия, суммарная длительность действия которых за период эксплуатации мала (например, крановые нагрузки; ветровые; нагрузки, возникающие при изготовлении, транспортировании и возведении), а также при учете особых нагрузок, вызванных деформациями просадочных, набухающих, вечномерзлых и тому подобных грунтов

gb2

0,85

б) при учете в рассматриваемом сочетании кратковременных нагрузок (непродол­жи­тельного действия) или особых, не указанных в поз. 1а

gb2

1,10

2. Бетонирование в вертикальном положении при высоте слоя бетонирования более 1,5 м

gb3

0,80

3. Эксплуатация не защищенных от солнечной радиации конструкций в климатическом подрайоне IVА согласно СНиП 2.01.01-82

gb7

0,85

4. Бетонные конструкции

gb9

0,90

5. Влажность ячеистого бетона, %:

gb11

10 и менее

1,00

25 и более

0,85

от 10 до 25

По интер­поляции

П р и м е ч а н и я: 1. В табл. 7 приведены коэффициенты условий работы, учитываемые при расчете конструкций из ячеистых бетонов.

2. Если при учете особых нагрузок вводится дополнительный коэффициент gb2условий работы меньше единицы согласно указаниям соответствующих документов (например при учете сейсмических нагрузок), коэффициент принимается равным единице.

3. Коэффициенты gbi по поз. 1, 3 4, 5 должны учитываться при определении Rb и Rbt, а по поз. 2 - только при определении Rb.

4. Коэффициенты условий работы бетона вводятся независимо один от другого с тем, однако, чтобы их произведение было не менее 0,45.

2.12. Значения начального модуля упругости Еb при сжатии и растяжении для ячеистых бетонов с влажностью 10 ± 2 % (по массе) принимаются по табл. 8.

Таблица 8

Марка по средней плотности

Начальные модуль упругости автоклавного ячеистого бетона при сжатии и растяжении Еb × 10-3, МПа, при классе бетона по прочности на сжатие

D,

кг/м3

В1

В1,5

В2

В2,5

В3,5

В5

В7,5

В10

В12,5

В15

500

1,1 11,2

1,4 14,3

-

-

-

-

-

-

-

-

600

1,4 14,3

1,7 17,3

1,8 18,4

2,1 21,4

-

-

-

-

-

-

700

-

1,9 19,4

2,2 22,4

2,5 25,5

2,9 29,6

-

-

-

-

-

800

-

-

-

2,9 29,6

3,4 34,7

4,0 40,8

-

-

-

-

900

-

-

-

-

3,8 38,8

4,5 45,9

5,5 56,1

-

-

-

1000

-

-

-

-

-

5,0 51,0

6,0 61,2

7,0 71,4

-

-

1100

-

-

-

-

-

-

6,8 69,3

7,9 80,6

8,3 84,6

8,6 87,7

1200

-

-

-

-

-

-

-

8,4 85,7

8,8 89,7

9,3 94,8

П р и м е ч а н и я: 1. Над чертой указаны значения Еb × 10-3 в МПа, под чертой - в кгс/см2.

2. Для ячеистого бетона неавтоклавного твердения значения Eb принимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.

В климатическом подрайоне IVA для конструкций, не защищенных от действия солнечной радиации, значения Eb, указанные в табл. 8, следует умножать на коэффициент 0,85.

При соответствующем экспериментальном обосновании допускается учитывать влияние не только класса бетона по прочности и его марки по плотности, но и состава и вида вяжущего, а также условий изготовления и твердения бетона, при этом можно принимать другие значения, согласованные в установленном порядке.

2.13 (2.15). Коэффициент линейной температурной деформации ячеистых бетонов аbt при изменении температуры от минус 40 до плюс 50 °С принимается равным аbt = 0,8 × 10-5 °С-1.

При наличии данных о минералогическом составе заполнителей, расходе цемента, степени водонасыщения бетона, морозостойкости и т.д. допускается принимать другие значения аbt, обоснованные в установленном порядке. Для расчетной температуры ниже минус 50 °С значения аbt принимаются по экспериментальным данным.

2.14 (2.16). Начальный коэффициент поперечной деформации ячеистых бетонов (коэффициент Пуассона) n принимается равным 0,2, а модуль сдвига ячеистых бетонов G - равным 0,4 соответствующих значений Еb, указанных в табл. 8.

studfiles.net

Нормативные и расчетные значения характеристик бетона

2.6.Основными прочностными характеристиками бетона являются нормативные значения:

сопротивления бетона осевому сжатию (призменная прочность) Rb,n;

сопротивления бетона осевому растяжению Rbt,n.

Нормативные значения сопротивления бетона Rb,n и Rbt,nв зависимости от класса бетона В даны в табл.2.3

Таблица 2.3

Вид сопротивления

Нормативные значения сопротивления бетона Rb,nиRbt,nи расчетные значения сопротивления бетона для предельных состояний второй группыRb,serиRbt,ser, МПа (кгс/см2), при классе бетона по прочности на сжатие

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

Сжатие осевое (призменная прочность) Rb,n,Rb,ser

11,0 (112)

15,0 (153)

18,5 (188)

22,0 (224)

25,5 (260)

29,0 (296)

32,0 (326)

36,0 (367)

39,5 (403)

43,0 (438)

Растяжение осевое Rbt,n,Rbt,ser

1,10 (11,2)

1,35 (13,8)

1,55 (15,8)

1,75 (17,8)

1,95 (19,9)

2,10 (21,4)

2,25 (22,9)

2,45 (25,0)

2,60 (26,5)

2,75 (28,0)

2.7.Расчетные значения сопротивления бетона осевому сжатию и осевому растяжению для предельных состояний первой группыRb иRbtопределяются делением нормативных сопротивлений на коэффициенты надежности по бетону, принимаемые равными: при сжатии γb= 1,3; при растяжении γbt= 1,5.

Расчетные значения сопротивления бетона осевому сжатию и осевому растяжению для предельных состояний второй группы Rb,serиRbt,serпринимаются равными нормативными сопротивлениямиRb,nиRbt,n.

Расчетные значения сопротивления бетона Rb,Rbt,Rb,serиRbt,ser(с округлением) в зависимости от их классов по прочности на сжатие приведены: для предельных состояний первой группы - в табл.2.4, второй группы - в табл.2.3.

Таблица 2.4

Вид сопротивления

Расчетные значения сопротивления бетона для предельных состояний первой группы RbиRbt,МПа (кгс/см2), при классе бетона по прочности на сжатие

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

Сжатие осевое (призменная прочность) Rb

8,5 (86,6)

11,5 (117)

14,5 (148)

17,0 (173)

19,5 (199)

22,0 (224)

25,0 (255)

27,5 (280)

30,0 (306)

33,0 (336)

Растяжение осевое Rbt

0,75 (7,6)

0,90 (9,2)

1,05 (10,7)

1,15 (11,7)

1,30 (13,3)

1,40 (14,3)

1,50 (15,3)

1,60 (16,3)

1,70 (17,3)

1,80 (18,3)

2.8.При расчете на действие только постоянных и временных длительных нагрузок расчетные сопротивления бетонаRbиRbtумножаются на коэффициент условий работы γb1= 0,9.

2.9.Значения начального модуля упругости бетона при сжатии и растяжении принимают в зависимости от класса бетона по прочности на сжатие В согласно табл.2.5.

Таблица 2.5

Значения начального модуля упругости бетона при сжатии и растяжении Eb· 10-3, МПа (кгс/см2), при классе бетона по прочности на сжатие

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

24,0 (245)

27,5 (280)

30,0 (306)

32,5 (331)

34,5 (352)

36,0 (367)

37,0 (377)

38,0 (387)

39,0 (398)

39,5 (403)

При продолжительном действии нагрузки значение начального модуля деформаций бетона определяют по формуле

                                                                     (2.1)

где φb,cr-коэффициент ползучести, принимаемый в зависимости от относительной влажности воздуха и класса бетона согласно табл. 2.6.

Таблица 2.6

Относительная влажность воздуха окружающей среды, %

Значения коэффициента ползучести φb,crпри классе бетона на сжатие

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

выше 75 (повышенная)

2,4

2,0

1,8

1,6

1,5

1,4

1,3

1,2

1,1

1,0

40 - 75 (нормальная)

3,4

2,8

2,5

2,3

2,1

1,9

1,8

1,6

1,5

1,4

ниже 40 (пониженная)

4,8

4,0

3,6

3,2

3,0

2,8

2,6

2,4

2,2

2,0

Примечание. Относительную влажность воздуха окружающей среды принимают по СНиП 23-01-99как среднюю месячную относительную влажность наиболее теплого месяца для района строительства.

2.10.Значения коэффициента поперечной деформации бетона (коэффициент Пуассона) допускается приниматьvb,p= 0,2, а модуль сдвига бетонаG= 0,4Eb.

2.11. Значения коэффициента линейной температурной деформации бетона при изменении температур от минус 40 до плюс 50 °С принимаются αb,t= 1 · 10-5°С.

2.12. Для определения массы железобетонной конструкции плотность тяжелого бетона принимается равной 2400 кг/м3. Плотность железобетона при содержании арматуры 3 % и менее может приниматься равной 2500 кг/м3, а при содержании арматуры более 3 % плотность определяется как сумма масс бетона и арматуры на единицу объема железобетонной конструкции. При этом масса 1 м арматурной стали принимается по приложению1, а полосовой, угловой и фасонной стали - по государственным стандартам.

При определении нагрузки от собственного веса удельный вес конструкции в кН/м3допускается принимать равным 0,01 от плотности в кг/м3.

2.13. Значения относительных деформаций бетона, характеризующих диаграмму состояния сжатого бетона (εb1,red, εb2) и растянутого бетона (εbt1,red, εbt2) приведены в пп.3.26и4.7.

studfiles.net