Влияние содержания микрокремнезема на повышение прочности реакционно-порошковых бетонов. Реактивный бетон


Способ приготовления самоуплотняющейся особовысокопрочной реакционно-порошковой фибробетонной смеси с очень высокими свойствами текучести и способ изготовления бетонных изделий из полученной смеси

Настоящее изобретение относится к промышленности строительных материалов и применяется для изготовления бетонных изделий: высокохудожественных ажурных ограждений и решеток, столбов, тонкой тротуарной плитки и бордюрного камня, тонкостенной плитки для внутренней и внешней облицовки зданий и сооружений, декоративных изделий и малых архитектурных форм. Способ приготовления самоуплотняющейся особовысокопрочной реакционно-порошковой фибробетонной смеси заключается в последовательном перемешивании компонентов до получения смеси с требуемой текучестью. Первоначально в смесителе перемешивают воду и гиперпластификатор, затем засыпают цемент, микрокремнезем, каменную муку и перемешивают смесь в течение 2-3 мин, после чего вводят песок и фибру и перемешивают в течение 2-3 мин. Получают самоуплотняющуюся особовысокопрочную реакционно-порошковую фибробетонную смесь с очень высокими свойствами текучести, которая содержит в своем составе следующие компоненты: портландцемент ПЦ500Д0, песок фракции от 0,125 до 0,63, гиперпластификатор, волокна, микрокремнезем, каменную муку, ускоритель набора прочности и воду. Способ изготовления бетонных изделий в формах заключается в приготовлении бетонной смеси, подаче смеси в формы и последующей выдержке в пропарочной камере. Внутреннюю, рабочую поверхность формы подвергают обработке тонким слоем воды, затем заливают в форму самоуплотняющуюся особовысокопрочную реакционно-порошковую фибробетонную смесь с очень высокими свойствами текучести. После заполнения формы распыляют на поверхность смеси тонкий слой воды и накрывают форму технологическим поддоном. Технический результат - получение самоуплотняющейся особовысокопрочной реакционно-порошковой фибробетонной смеси с очень высокими свойствами текучести, обладающей высокими прочностными характеристиками, имеющей низкую стоимость и позволяющей изготавливать ажурные изделия. 2 н. и 2 з.п. ф-лы, 1 табл., 3 ил.

 

Настоящее изобретение относится к промышленности строительных материалов и применяется для изготовления бетонных изделий: высокохудожественных ажурных ограждений и решеток, столбов, тонкой тротуарной плитки и бордюрного камня, тонкостенной плитки для внутренней и внешней облицовки зданий и сооружений, декоративных изделий и малых архитектурных форм.

Известен способ изготовления декоративных строительных изделий и/или декоративных покрытий путем перемешивания с водой вяжущего, содержащего портландцементный клинкер, модификатор, включающий органический водопонижающий компонент и некоторое количество ускорителя твердения и гипс, пигментов, заполнителей, минеральных и химических (функциональных) добавок, причем полученную смесь выдерживают до насыщения бентонитовой глины (функциональная добавка стабилизатор смеси) пропиленгликолем (органический водопонижающий компонент), фиксации полученного комплекса гелеобразователем гидроксипропилцеллюлозой, укладки, формования, уплотнения и термообработки. Причем перемешивание сухих компонентов и приготовление смеси осуществляют в разных смесителях (см. патент РФ № 2084416, МПК6 С04В 7/52, 1997 г.).

Недостатком данного решения является необходимость применения различного оборудования для смешивания компонентов смеси и последующего проведения операций уплотнения, что усложняет и удорожает технологию. Кроме того, при использовании данного способа невозможно получить изделия с тонкими и ажурными элементами.

Известен способ приготовления смеси для производства строительных изделий, включающий активизацию вяжущего путем совместного помола портландцементного клинкера с сухим суперпластификатором и последующее смешение с наполнителем и водой, причем сначала осуществляют смешение активированного наполнителя с 5-10% воды затворения, затем вводят активированное вяжущее и смесь перемешивают, после чего вводят 40 - 60% воды затворения и смесь перемешивают, затем вводят оставшуюся воду и осуществляют окончательное перемешивание до получения однородной смеси. Постадийное смешение компонентов осуществляют в течение 0,5-1 мин. Изготовленные из полученной смеси изделия необходимо выдерживать при температуре 20°C и влажности 100% в течение 14 сут (см. патент РФ № 2012551, МПК5 C04B 40/00, 1994 г.).

Недостатком известного способа является сложная и дорогостоящая операция по совместному помолу вяжущего и суперпластификатора, требующая больших затрат на организацию смешивающего и помольного комплекса. Кроме того, при использовании данного способа невозможно получить изделия с тонкими и ажурными элементами.

Известен состав для приготовления самоуплотняющегося бетона, содержащий:

- 100 мас. частей цемента,

- 50-200 мас. частей смесей песков из кальцинированных бокситов разного гранулометрического состава, наиболее тонкий песок среднего гранулометрического состава менее 1 мм, наиболее крупный песок среднего гранулометрического состава менее 10 мм;

- 5-25 мас. частей сверхмалых частиц карбоната кальция и белой сажи, причем содержание белой сажи составляет не более 15 мас. частей;

- 0,1-10 мас. частей противопенного средства;

- 0,1-10 мас. частей суперпластификатора;

- 15-24 мас. частей волокон;

- 10-30 мас. частей воды.

Массовое отношение между количеством сверхмалых частиц карбоната кальция в бетоне и количеством белой сажи может достигать 1:99-99:1, предпочтительно 50:50-99:1 (см. патент РФ № 2359936, МПК С04В 28/04 С04В 111/20 С04В 111/62 (2006.01), 2009 г., п.12).

Недостатком указанного бетона является использование дорогостоящих песков из кальцинированных бокситов, применяемых обычно в алюминиевом производстве, а также избыточное количество цемента, что ведет, соответственно, к увеличению расхода остальных весьма дорогостоящих компонентов бетона и, соответственно, к увеличению его стоимости.

Проведенный поиск показал, что не найдено решений, обеспечивающих получение реакционно-порошкового самоуплотняющегося бетона.

Известен способ приготовления бетона с добавкой волокон, в котором все компоненты бетона смешивают до получения бетона с требуемой текучестью или сначала смешивают сухие компоненты, такие как цемент, разные виды песка, сверхмалые частицы карбоната кальция, белая сажа и, возможно, суперпластификатор и противопенное средство, после чего добавляют в смесь воду, и при необходимости суперпластификатор, и противопенное средство, если они присутствуют в жидком виде, и при необходимости волокна, и перемешивают до получения бетона с требуемой текучестью. После перемешивания, например, в течение 4-16 минут полученный бетон может легко формоваться благодаря своей очень высокой текучести (см. патент РФ № 2359936, МПК С04В 28/04, С04В 111/20, С04В 111/62 (2006.01), 2009 г., п.12). Данное решение принято за прототип.

Полученный самоуплотняющийся со сверхвысокими свойствами бетон может быть применен для изготовления сборных элементов, таких как столбы, поперечные балки, балки, перекрытия, плиточное покрытие, художественные сооружения, предварительно напряженных элементов или композиционных материалов, материала для заделки зазоров между конструкционными элементами, элементов систем ассенизации или в архитектуре.

Недостатком указанного способа является большой расход цемента для приготовления 1 м3 смеси, что влечет за собой увеличение стоимости бетонной смеси и изделий из нее из-за увеличения расхода остальных компонентов. Кроме того, описанный в изобретении способ использования полученного бетона не несет каких-либо сведений, каким образом можно изготовить, например, художественные ажурные и тонкостенные бетонные изделия.

Широко известны способы изготовления различных изделий из бетона, когда залитый в форму бетон впоследствии подвергают виброуплотнению.

Однако с помощью таких известных способов невозможно получить художественных, ажурных и тонкостенных бетонных изделий.

Известен способ изготовления бетонных изделий в упаковочных формах, заключающийся в приготовлении бетонной смеси, подачи смеси в формы, твердении. Используется воздушно- и влагоизоляционная форма в виде упаковочных тонкостенных многокамерных форм, покрытых после подачи в них смеси воздухо- и влагоизоляционным покрытием. Твердение изделий производят в герметичных камерах в течение 8-12 часов (см. патент на изобретение Украины № UA 39086, МПК7 В28В 7/11; В28В 7/38; С04В 40/02, 2005 г.).

Недостатком известного способа является большая стоимость форм, используемых для изготовления бетонных изделий, а также невозможность изготовления таким способом художественных, ажурных и тонкостенных бетонных изделий.

Первая задача - получение состава самоуплотняющейся особовысокопрочной реакционно-порошковой фибробетонной смеси с требуемой удобоукладываемостью и необходимыми прочностными характеристиками, что позволит снизить стоимость получаемой самоуплотняющейся бетонной смеси.

Вторая задача - повышение прочностных характеристик в суточном возрасте при оптимальной удобоукладываемости смеси и улучшение декоративных свойств лицевых поверхностей изделий из бетона.

Первая поставленная задача решается за счет того, что разработан способ приготовления самоуплотняющейся особовысокопрочной реакционно-порошковой фибробетонной смеси, заключающийся в перемешивании компонентов бетонной смеси до получения требуемой текучести, в котором смешивание компонентов фибробетонной смеси осуществляют последовательно, причем первоначально в смесителе перемешивают воду и гиперпластификатор, затем засыпают цемент, микрокремнезем, каменную муку и перемешивают смесь в течение 2-3 мин, после чего вводят песок и фибру и перемешивают в течение 2-3 мин до получения фибробетонной смеси, содержащей компоненты, мас.%:

портландцемента ПЦ500 Д0 27,0-31,0
каменной муки 12,0-15,0
песка фр. 0,125-0,63 40,0-44,0
микрокремнезема 2,0-5,0
гиперпластификатора 0,2-0,3
фибры стальной 0,22×13 мм 3,0-7,0
воды 7,0-11,0

Общее время приготовления бетонной смеси составляет от 12 до 15 минут.

Технический результат от использования изобретения заключается в получении самоуплотняющейся особовысокопрочной реакционно-порошковой фибробетонной смеси с очень высокими свойствами текучести, повышении качества и растекаемости фибробетонной смеси, за счет специально подобранного состава, последовательности введения и времени перемешивания смеси, что ведет к существенному повышению текучести и прочностных характеристик бетона до М1000 и выше, снижению необходимой толщины изделий.

Выполнение смешивания ингредиентов в определенной последовательности, когда первоначально в смесителе перемешивают отмеренное количество воды и гиперпластификатора, затем добавляют цемент, микрокремнезем, каменную муку и перемешивают в течении 2-3 минут, после чего вводят песок и фибру и полученную бетонную смесь перемешивают в течении 2-3 минут, позволяет обеспечить значительное повышение качества и характеристик текучести (удобоукладываемости) получаемой самоуплотняющейся особовысокопрочной реакционно-порошковой фибробетонной смеси.

Технический результат от использования изобретения заключается в получении самоуплотняющейся особовысокопрочной реакционно-порошковой фибробетонной смеси с очень высокими свойствами текучести, обладающей высокими прочностными характеристиками и имеющей низкую стоимость. Соблюдение приведенного соотношения компонентов смеси, мас.%:

портландцемент ПЦ500 Д0 27,0-31,0
каменная мука 12,0-15,0
песок фр. 0,125-0,63 40,0-44,0
микрокремнезем 2,0-5,0
гиперпластификатор 0,2-0,3
фибра стальная 0,22×13 мм 3,0-7,0
вода 7,0-11,0

позволяет получить самоуплотняющуюся особовысокопрочную реакционно-порошковую фибробетонную смесь с очень высокими свойствами текучести, обладающую высокими прочностными характеристиками и имеющую при этом низкую стоимость.

Использование приведенных выше компонентов при соблюдении указанной пропорции в количественном соотношении позволяет при получении самоуплотняющейся особовысокопрочной реакционно-порошковой фибробетонной смеси с требуемой текучестью и высокими прочностными качествами обеспечить низкую стоимость получаемой смеси и повысить, таким образом, ее потребительские свойства. Использование таких компонентов, как микрокремнезем, каменная мука, позволяет уменьшить процентное содержание цемента, что влечет за собой снижение процентного содержания других дорогостоящих компонентов (гиперпластификатора, например), а также отказаться от использования дорогих песков из кальцинированных бокситов, что также ведет к снижению стоимости бетонной смеси, но не влияет на ее прочностные качества.

Вторая поставленная задача решается за счет того, что разработан способ изготовления изделий в формах из фибробетонной смеси, приготовленной описанным выше способом, заключающийся в подаче смеси в формы и последующей выдержке для отверждения, причем первоначально на внутреннюю, рабочую поверхность формы распыляют тонкий слой воды, а после заполнения формы смесью распыляют на ее поверхности тонкий слой воды и накрывают форму технологическим поддоном.

Причем подачу смеси в формы осуществляют последовательно, накрывая заполненную форму сверху технологическим поддоном, после установки технологического поддона процесс изготовления изделий повторяют многократно, устанавливая следующую форму на технологический поддон над предыдущей.

Технический результат от использования изобретения заключается в повышении качества лицевой поверхности изделия, существенном повышении прочностных характеристик изделия, за счет применения самоуплотняющейся фибробетонной смеси с очень высокими свойствами текучести, специальной обработки форм и организации ухода за бетоном в суточном возрасте. Организация ухода за бетоном в суточном возрасте заключается в обеспечении достаточной гидроизоляции форм с залитым в них бетоном путем покрытия верхнего слоя бетона в форме водяной пленкой и накрытия форм поддонами.

Технический результат достигается за счет применения самоуплотняющейся фибробетонной смеси с очень высокими свойствами текучести, которая позволяет производить очень тонкие и ажурные изделия любой конфигурации, повторять любые фактуры и виды поверхностей, исключает процесс виброуплотнения при формовке изделий, а также позволяет использовать любые формы (эластичные, стеклопластиковые, металлические, пластиковые и др.) для производства изделий.

Предварительное смачивание формы тонким слоем воды и завершающая операция распыления на поверхности залитой фибробетонной смеси тонкого слоя воды, накрывание формы с бетоном следующим технологическим поддоном в целях создания герметичной камеры для лучшего созревания бетона позволяет исключить появление воздушных пор от защемленного воздуха, добиться высокого качества лицевой поверхности изделий, снизить испарение воды из твердеющего бетона и повысить прочностные характеристики получаемых изделий.

Количество заливаемых одновременно форм выбирается из расчета объема полученной самоуплотняющейся особовысокопрочной реакционно-порошковой фибробетонной смеси.

Получение самоуплотняющейся фибробетонной смеси с очень высокими свойствами текучести и за счет этого с улучшенными качествами удобоукладываемости позволяет при изготовлении художественных изделий не применять вибростол и упростить технологию изготовления, при этом повысить прочностные характеристики художественных изделий из бетона.

Технический результат достигается за счет специально подобранного состава мелкозернистой самоуплотняющейся особовысокопрочной реакционно-порошковой фибробетонной смеси, режима последовательности введения компонентов, способа обработки форм и организации ухода за бетоном в суточном возрасте.

Преимущества данной технологии и используемого бетона:

- Использование песка модуля крупности фр. 0,125-0,63;

- Отсутствие в составе бетонной смеси крупного заполнителя;

- Возможность изготовления бетонных изделий с тонкими и ажурными элементами;

- Идеальная поверхность бетонных изделий;

- Возможность изготовления изделий с заданной шероховатостью и текстурой поверхности;

- Высокая марочная прочность бетона на сжатие, не менее М1000;

- Высокая марочная прочность бетона при изгибе, не менее Ptb100;

Настоящее изобретение подробнее поясняется ниже с помощью примеров выполнения, которые не являются ограничительными.

Фиг. 1 (а, б) - схема изготовления изделий - заливка полученного фибробетона в формы;

Фиг. 2 - вид сверху на изделие, получаемое с использованием заявленного изобретения.

Способ получения самоуплотняющейся особовысокопрочной реакционно-порошковой фибробетонной смеси с очень высокими свойствами текучести, содержащей указанные выше компоненты, осуществляют следующим образом.

Сначала взвешиваются все компоненты смеси. Затем в смеситель заливают отмеренное количество воды, гиперпластификатора. После чего смеситель включают. В процессе перемешивания воды, гиперпластификатора последовательно засыпают следующие компоненты смеси: цемент, микрокремнезем, каменную муку. При необходимости для окрашивания бетона в массе в него можно добавить железоокисные пигменты. После введения этих компонентов в смеситель полученная суспензия перемешивается от 2 до 3 минут.

На следующем этапе последовательно вводят песок и фибру и бетонную смесь перемешивают от 2 до 3 минут. После чего бетонная смесь готова к использованию.

Общее время изготовления фибробетонной смеси составляет от 12 до 15 минут, данное время включает в себя дополнительные операции по засыпке компонентов.

В ходе приготовления смеси вводят ускоритель набора прочности.

Полученная самоуплотняющаяся особовысокопрочная реакционно-порошковая фибробетонная смесь с очень высокими свойствами текучести представляет собой жидкую консистенцию, одним из показателей которой является расплыв конуса Хагермана на стекле. Чтобы смесь хорошо растекалась, расплыв должен быть не менее 300 мм.

В результате применения заявленного способа получают самоуплотняющуюся особовысокопрочную реакционно-порошковую фибробетонную смесь с очень высокими свойствами текучести, которая содержит в своем составе следующие компоненты: портландцемент ПЦ500Д0, песок фракции от 0,125 до 0,63, гиперпластификатор, волокна, микрокремнезем, каменную муку, ускоритель набора прочности и воду. При осуществлении способа изготовления фибробетонной смеси соблюдают следующее соотношение компонентов, мас.%:

портландцемент ПЦ500 Д0 27,0-31,0
каменная мука 12,0-15,0
песок фракции 0,125-0,63 40,0-44,0
микрокремнезем 2,0-5,0
гиперпластификатор 0,2-0,3
фибра стальная 0,22×13 мм 3,0-7,0
ускоритель набора прочности 0,15-0,35
вода 7,0-11,0

Причем при осуществлении способа изготовления фибробетонной смеси используют каменную муку из различных природных материалов или отходов, таких как, например, кварцевая мука, доломитовая мука, известняковая мука и т.п.

Гиперпластификатор можно использовать следующих марок: Sika ViscoCrete, Glenium и т.п.

При изготовлении смеси может быть введен ускоритель набора прочности, например Master X-Seed 100 (X-SEED 100) или аналогичные ускорители набора прочности.

Полученную самоуплотняющуюся особовысокопрочную реакционно-порошковую фибробетонную смесь с очень высокими свойствами текучести можно использовать при производстве художественных изделий, имеющих сложную конфигурацию, например ажурных изгородей (см. фиг. 2). Используют полученную смесь непосредственно после ее изготовления.

Способ изготовления бетонных изделий из самоуплотняющейся особовысокопрочной реакционно-порошковой фибробетонной смеси с очень высокими свойствами текучести, полученной описанным выше способом и имеющей указанный состав, осуществляется следующим образом.

Для изготовления ажурных изделий путем заливки самоуплотняющейся особовысокопрочной реакционно-порошковой фибробетонной смеси с очень высокими свойствами текучести используют эластичные (полиуретановые, силиконовые, формопластовые) или жесткие пластиковые формы 1. Условно показана форма, имеющая простую конфигурацию, однако этот вид формы не показателен и избран для упрощения схемы. Форма устанавливается на технологический поддон 2. На внутреннюю, рабочую поверхность 3 формы производят распыление тонкого слоя воды, это в дальнейшем снижает количество пузырей защемленного воздуха на лицевой поверхности бетонного изделия.

После этого полученную фибробетонную смесь 4 заливают в форму, где она растекается и самоуплотняется под действием собственного веса, выдавливая находящийся в ней воздух. После самовыравнивания бетонной смеси в форме для более интенсивного выхода воздуха из бетонной смеси на залитый в форму бетон распыляют тонкий слой воды. Затем форму, заполненную фибробетонной смесью, накрывают сверху следующим технологическим поддоном 2, который создает закрытую камеру для более интенсивного набора прочности бетона (см. фиг.1 (a)).

На этот поддон выставляют новую форму, и процесс изготовления изделий повторяют. Таким образом, из одной порции подготовленной бетонной смеси может быть заполнено последовательно несколько форм, установленных друг над другом, что обеспечивает повышение эффективности использования приготовленной фибробетонной смеси. Формы, заполненные фибробетонной смесью оставляют для отверждения смеси примерно на 15 часов.

Через 15 часов бетонные изделия расформовывают и направляют на шлифовку тыльной стороны, а затем в пропарочную камеру или в камеру тепло-влажностной обработки (ТВО), где изделия выдерживают до полного набора прочности.

Использование изобретения позволяет производить высоко-декоративные ажурные и тонкостенные высокопрочные бетонные изделия марки М1000 и выше по упрощенной литьевой технологии без использования виброуплотнения.

Изобретение может быть осуществлено с использованием перечисленных известных компонентов при соблюдении количественных пропорций и описанных технологических режимов. При осуществлении изобретения может быть применено известное оборудование.

Пример осуществления способа приготовления самоуплотняющейся особовысокопрочной реакционно-порошковой фибробетонной смеси с очень высокими свойствами текучести.

Сначала взвешиваются все компоненты смеси и отмеряют в приведенном количестве (масс.%):

портландцемент ПЦ500 Д0 28
кварцевая мука 14
песок фр. 0,125-0,63 42
микрокремнезем 3
гиперпластификатор Sika ViscoCrete 20 Gold 0,2
фибра стальная 0,22×13мм 3,0
ускоритель набора прочности 0,2
вода 9,6

Затем в смеситель заливают отмеренное количество воды и гиперпластификатора Sika ViscoCrete 20 Gold. После чего смеситель включают и перемешивают компоненты. В процессе перемешивания воды и гиперпластификатора последовательно засыпают следующие компоненты смеси: портландцемент ПЦ500 Д0, микрокремнезем, кварцевую муку. Процесс перемешивания ведут непрерывно в течение 2-3 минут.

Уменьшение времени перемешивания не позволяет получить однородную смесь, а увеличение времени перемешивания не дает дополнительного улучшения качества смеси, но затягивает процесс.

На следующем этапе последовательно вводят песок фр. 0,125-0,63 и фибру стальную 0,22×13мм. Бетонную смесь перемешивают в течение 2-3 минут.

Уменьшение времени перемешивания не позволяет получить однородную смесь, а увеличение времени перемешивания не дает дополнительного улучшения качества смеси, но затягивает процесс.

После чего бетонная смесь готова к использованию.

Общее время изготовления фибробетонной смеси составляет от 12 до 15 минут, данное время включает в себя дополнительные операции по засыпке компонентов.

Приготовленную самоуплотняющуюся особовысокопрочную реакционно-порошковую фибробетонную смесь с очень высокими свойствами текучести используют для изготовления ажурных изделий путем заливки в формы.

Примеры состава получаемой самоуплотняющейся особовысокопрочной реакционно-порошковой фибробетонной смеси с очень высокими свойствами текучести, изготовленной заявленным способом приведены в таблице 1.

1. Способ приготовления самоуплотняющейся особовысокопрочной реакционно-порошковой фибробетонной смеси с очень высокими свойствами текучести, заключающийся в перемешивании компонентов бетонной смеси до получения требуемой текучести, отличающийся тем, что смешивание компонентов, фибробетонной смеси осуществляют последовательно, причем первоначально в смесителе перемешивают воду и гиперпластификатор, затем засыпают цемент, микрокремнезем, каменную муку и перемешивают смесь в течение 2-3 мин, после чего вводят песок и фибру и перемешивают в течение 2-3 мин до получения фибробетонной смеси, содержащей, мас.%:

портландцемент ПЦ500 Д0 27,0-31,0
каменная мука 12,0-15,0
песок фр. 0,125-0,63 40,0-44,0
микрокремнезем 2,0-5,0
гиперпластификатор 0,2-0,3
фибра стальная 0,22×13 мм 3,0-7,0
вода 7,0-11,0

2. Способ по п.1, отличающийся тем, что общее время приготовления бетонной смеси составляет от 12 до 15 минут.

3. Способ изготовления изделий в формах из фибробетонной смеси, приготовленной способом по пп.1, 2, заключающийся в подаче смеси в формы и последующей термообработке в пропарочной камере, причем первоначально на внутреннюю, рабочую поверхность формы распыляют тонкий слой воды, после заполнения формы смесью распыляют на ее поверхности тонкий слой воды и накрывают форму технологическим поддоном.

4. Способ по п.3, отличающийся тем, что подачу смеси в формы осуществляют последовательно, накрывая заполненную форму сверху технологическим поддоном, после установки технологического поддона процесс изготовления изделий повторяют многократно, устанавливая следующую форму на технологический поддон над предыдущей и заполняя ее.

www.findpatent.ru

Влияние содержания микрокремнезема на повышение прочности реакционно-порошковых бетонов

Еще в период создания реакционно-порошковых бетонов в 1992–94 гг. Richard P. и Cheyrezy M. H. доказали [1], что для создания бетонов с высокой прочностью содержание микрокремнезема (МК) должно составлять в литых бетонах 25–30 % от массы цемента.

Позднее в 2004 году было показано, [2] что из смеси цемента и микрокремнезема в соотношении до 1:1, при добавлении 1000 кг очень мелкого песка менее 0,5 мм путем прессования, выдержки в воде в течение 8 суток, последующей выдержки в воде при температуре t = 90оС и сушке при температуре t = 270 оС были получены бетоны с прочностью 280–370 МПа.

Расходы микрокремнезема, доходящие до 1000 кг/м3, а также жесткие тепловые режимы крайне не экономичны, и они пригодны лишь для науки с целью показать возможности реакционно-порошковых смесей при синтезе самых низкоосновных гидросиликатов. Реальные режимы пропаривания для литых реакционно-порошковых бетонов — 85–95 оС [3].

В последние годы высказываются теоретические мнения относительно низкого ингибирующего действия арматуры в малощелочной среде бетонов, в котором весь портландит связан в гидросиликаты кальция. В связи с этим предлагается вводить микрокремнезем в количестве 10–15 % от массы цемента. В целом ряде зарубежных работ для получения реакционно-порошковых бетонов с прочностью 190–200 МПа рекомендуется вводить 25–30 % микрокремнезема.

Мы провели свои научные эксперименты по изучению роли и дозировки микрокремнезема в реакционно-порошковых бетонах нового поколения [4].

Контрольный состав изготавливался из порошкового бетона без микрокремнезема (состав ПБ-7) на Подольском цементе М500 ДО, который предварительно смешивался с гиперпластификатором Melflux 5581F в сухом виде в смесителе с последующей активацией в шаровой мельнице в течение 5 минут. Установлено, что такая обработка практически не увеличивает дисперсность (не более 20–40 см2/г), но повышает однородность.

Второй, третий и четвертый составы (ПБ-3, ПБ-4, ПБ-5) изготавливались, соответственно с добавлением 5, 10 и 15 % микрокремнезема от массы цемента. Процедура приготовления сухой цементно-микрокремнеземистой смеси с гиперпластификатором, аналогична приготовлению контрольного состава: компоненты активировались в мельнице, в течение 5 минут.

Результаты исследований представлены в таблицах 1; 2; 3; 4. В контрольном составе ПБ-7 смесь была умеренно-текучей (табл. 1). Порошковый бетон без микрокремнезема на Подольском цементе обладает достаточно высокой прочностью на сжатие (126 МПа), но повышенной хрупкостью с невысоким условным коэффициентом трещиностойкости. Удельный расход цемента на единицу прочности равен 5,42 кг/МПа.

Таблица 1

Состав, реотехнологические показатели бетонной смеси и физико-технические свойства бетона без микрокремнезема (состав ПБ-7)

Наименование компонентов

На 1 м3, кг

Объем на 1 м3, л

В/Ц, В/Т

ρ, кг/м3

Прочность МПа, через, сут.

1

2

3

7

28

ЦДС Цемент

Подольский

ПЦ 500 Д0, с

1,0 %

Melflux 5581F,

Sуд = 6272 см2/г

683

220,3

0,342

2327

Rизг

7,5

Rизг 8,0

Rизг

11,2

Rизг

12,0

0,11

Rсж

41,2

Rсж

57,6

Rсж

75,6

Rсж

103

Rсж

126

 Микрокварц пылe-

видный ЛГОК (ПМ),

Sуд = 3998 см2/г

341,5

129

РК

Хагерманна

280×285

мм

 = 5,42 кг/МПа;

 = 0,184 МПа/кг

 = 56,9 кг/МПа

 = 0,095

Песок формовочный тонкозернистый

ЛГОК (ПТ),

фр. 0,16–0,63 мм

1102,4

416

ΣМсух.

Вода

2127

234

765,3

234

Мб.с.

2361

999,3

Введение 5 % микрокремнезема мало увеличивает прочность как на сжатие (124 МПа), так и на изгиб (11 МПа) (табл. 2) по сравнению с контрольным составом. При одинаковых значениях В/Ц и В/Т — отношений и реотехнологических показателях плотность бетонной смеси практически не увеличилась, но содержание вовлеченного воздуха в бетоне с микрокремнеземом было 3,2 %, в то время как в контрольном составе 2,5 %.

Таблица 2

Состав, реотехнологические показатели бетонной смеси и физико-технические свойства бетона с 5 % микрокремнезема (состав ПБ-3)

Наименование компонентов

На 1 м3, кг

Объем на 1 м3, л

В/Ц В/Т

ρ, кг/м3

Прочность МПа, через, сут.

1

2

3

7

28

 ЦДС Цемент Подольский

ПЦ 500 Д0, с 1,0 % Melflux 5581F, с МК Новокузнецким 5 % от цемента,

Sуд = 7050см2/г

728

Ц

693

223,5

0,343

2308

Rизг

8,4

Rизг

9,1

Rизг

9,6

Rизг

10,1

Rизг

11

МК

35

15,2

0,11

Rсж

58,8

Rсж

80

Rсж

85,2

Rсж

109

Rсж

124

 Микрокварц пылевидный ЛГОК (ПМ), Sуд = 3998 см2/г

344,3

130

РК

Хагерманна

265×270

мм

 Песок формовочный

тонкозернистый ЛГОК (ПТ),

фр. 0,315–0,63 мм

1092

412

 = 5,6 кг/МПа;

 = 0,18 МПа/кг

 = 63 кг/МПа

 = 0,088

ΣМсух.

Вода

2164,3

238

780,7

238

Мб.с.

2402,3

1018,7

Добавление в бетон 10 % микрокремнезема (состав ПБ-4) (табл. 3) с некоторым понижением В/Ц (на 1,17 %), при неизменном В/Т — отношении, сохраняет консистенцию контрольного состава, плотность бетона и повышает прочность на сжатие (132 МПа) и растяжение при изгибе (14 МПа). Если сравнить прирост прочности по сравнению с первым составом, то она возрастает, соответственно, на 17 и на 10 %.

Реакционно-порошковый бетон с 15 % микрокремнезема (состав ПБ-5) (табл. 4) при неизменном реотехнологическом показателе по сравнению со вторым составом интенсивно набирал прочность во времени и существенно повысил прочность на растяжение при изгибе на 38 %. Прочность на сжатие возросла незначительно (136 МПа). Возможно, прочностные показатели были бы и выше, но в бетонной смеси содержалось больше воздуха (3,9 %) чем в других составах, а плотность бетона была наименьшей (2283 кг/м3). Поэтому повышение прочности произошло из-за более высокой плотности и прочности высококремнеземистой матрицы.

Таблица 3

Состав, реотехнологические показатели бетонной смеси и физико-технические свойства бетона с 10 % микрокремнезема (состав ПБ-4)

Наименование компонентов

На 1 м3, кг

Объем на 1 м3, л

В/Ц, В/Т

ρ, кг/м3

Прочность МПа, через, сут.

1

2

3

7

28

ЦДС Цемент Подольский

ПЦ 500 Д0, с 1,0 % Melflux 5581F, с МК Новокузнецким 10 % от цемента,

Sуд = 6975 см2/г

757

Ц

688

222

0,338

2325

Rизг

7,8

Rизг

8,8

Rизг

10,1

Rизг

14,0

МК

69

30

0,11

Rсж

37,2

Rсж

61,6

Rсж

67,6

Rсж

89,6

Rсж

132

Микрокварц пылевидный ЛГОК (ПМ),

Sуд = 3998см2/г

339,4

128

РК

Хагерманна

285

мм

 = 5,2 кг/МПа;

 = 0,19 МПа/кг

 = 49,1 кг/МПа

 = 0,106

Песок Формовочный тонкозернистый ЛГОК (ПТ),

фр. 0,16–0,63 мм

1018,2

384

ΣМсух.

Вода

2114,6

233

764

233

Мб.с.

2347,6

997

Таблица 4

Состав, реотехнологические показатели бетонной смеси и физико-технические свойства бетона с 15 % микрокремнезема (состав ПБ-5)

Наименование компонентов

На 1 м3, кг

Объем на 1 м3, л

В/Ц

В/Т

ρ, кг/м3

Прочность МПа, через, сут.

1

2

3

7

28

ЦДС Цемент Подольский

ПЦ 500 Д0, с 1,0 % Мelflux 5581F, с МК Новокузнецким 15 % от цемента,

Sуд = 6975 см2/г

807

Ц

702

232,3

0,332

2283

Rизг 10,4

Rизг

10,1

Rизг

12,4

Rизг

21,6

МК

105

45,6

0,11

Rсж

48,4

Rсж

70,4

Rсж

82

Rсж

105

Rсж

136

Микрокварц пылевидный ЛГОК (ПМ),

Sуд = 3998 см2/г

339,4

128

РК

Хагерманна

255

мм

 = 5,16 кг/МПа;

 = 0,194 МПа/кг

 = 32,5 кг/МПа

 = 0,159

Песок Формовочный

тонкозернистый ЛГОК (ПТ), фр. 0,16–0,63 мм

975

368

ΣМсух.

Вода

2121,4

233

773,9

233

Мб.с.

2354,4

1006,9

В целом, при увеличении содержания Новокузнецкого МК, в соответствии с проведенными нами экспериментами, наблюдается больший прирост прочности на растяжение при изгибе (до 21,6 МПа) (табл. 4,), чем на сжатие.

Из анализа научных результатов видно, что с повышением содержания микрокремнезема по мере увеличения прочности бетонов, величина условного реологического критерия  возрастает с 1,33 до 1,73, а объем тонкого песка, определяющего структуру топологической матрицы, уменьшается с 416 л до 368 л. При насыпной плотности песка в уплотненном состоянии 1,53 кг/л и пустотности песка 42,3 % (423 л), коэффициент, равный отношению объема песка к объему пустот в нем и, характеризующий компактность структуры при сохранении оптимального объема для размещения реологической матрицы первого рода, равен 0,87.

Литература:

1.                  Richard P., Cheurezy M. Reactive Powder Concrete with High Ductility and 200–800 MPa Compressive Strength.// AGJ SPJ 144–22, — 1994, pр. 507–518.

2.                  Abouzar Sadrekarimi. Development of a Light Weight Reactive Powder Concrete. Journal of Advanced Concrete Technology. Japan Concrete Institute. Vol. 2, No 3, 409–417. October 2004.

3.                  Schmidt M. 50 Jahre Entwicklung bei Zement, Zusatzmittel und Beton. Schriftenreihe Baustoffe. / M. Schmidt Centrum Baaaustoffe und Material- prufund.– 2003. — H.2, — Р. 189–198.

4.                  Калашников В. И. Основные принципы создания высокопрочных и особовысокопрочных бетонов // Популярное бетоноведение. — 2008. № 3. С. 102.

moluch.ru

Бетон реакционный порошковый - это... Что такое Бетон реакционный порошковый?

Бетон реакционный порошковый – бетон, изготовленный из тонкоизмельченных реакционно-способных материалов с размером зерна от 0,2 до 300 мкм и характеризующийся высокой прочностью (более 120 МПа) и высокой водонепроницаемостью.

[ГОСТ 25192-2012]

Бетон реакционно-порошковый [англ. reactive powder concrete-RPC] – композиционный материал с высокими показателями прочности при сжатии 200—800 МПа, при изгибе >45 МПа, включающий в значительном количестве высокодисперсные минеральные компоненты — кварцевый песок, микрокремнезем, суперпластификатор, а также стальную фибру с низким В/Т (~0,2), с использованием тепловлажностной обработки изделий при температуре 90—200°С.

[Ушеров-Маршак А. В. Бетоноведение: лексикон. М.: РИФ Стройматериалы.- 2009. – 112 с.]

Рубрика термина: Виды бетона

Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника, Автотранспорт, Акустические материалы, Акустические свойства, Арки, Арматура, Арматурное оборудование, Архитектура, Асбест, Аспирация, Асфальт, Балки, Без рубрики, Бетон, Бетонные и железобетонные, Блоки, Блоки оконные и дверные, Бревно, Брус, Ванты, Вентиляция, Весовое оборудование, Виброзащита, Вибротехника, Виды арматуры, Виды бетона, Виды вибрации, Виды испарений, Виды испытаний, Виды камней, Виды кирпича, Виды кладки, Виды контроля, Виды коррозии, Виды нагрузок на материалы, Виды полов, Виды стекла, Виды цемента, Водонапорное оборудование, Водоснабжение, вода, Вяжущие вещества, Герметики, Гидроизоляционное оборудование, Гидроизоляционные материалы, Гипс, Горное оборудование, Горные породы, Горючесть материалов, Гравий, Грузоподъемные механизмы, Грунтовки, ДВП, Деревообрабатывающее оборудование, Деревообработка, ДЕФЕКТЫ, Дефекты керамики, Дефекты краски, Дефекты стекла, Дефекты структуры бетона, Дефекты, деревообработка, Деформации материалов, Добавки, Добавки в бетон, Добавки к цементу, Дозаторы, Древесина, ДСП, ЖД транспорт, Заводы, Заводы, производства, цеха, Замазки, Заполнители для бетона, Защита бетона, Защита древесины, Защита от коррозии, Звукопоглащающий материал, Золы, Известь, Изделия деревянные, Изделия из стекла, Инструменты, Инструменты геодезия, Испытания бетона, Испытательное оборудование, Качество цемента, Качество, контроль, Керамика, Керамика и огнеупоры, Клеи, Клинкер, Колодцы, Колонны, Компрессорное оборудование, Конвеера, Конструкции ЖБИ, Конструкции металлические, Конструкции прочие, Коррозия материалов, Крановое оборудование, Краски, Лаки, Легкие бетоны, Легкие наполнители для бетона, Лестницы, Лотки, Мастики, Мельницы, Минералы, Монтажное оборудование, Мосты, Напыления, Обжиговое оборудование, Обои, Оборудование, Оборудование для производства бетона, Оборудование для производства вяжущие, Оборудование для производства керамики, Оборудование для производства стекла, Оборудование для производства цемента, Общие, Общие термины, Общие термины, бетон, Общие термины, деревообработка, Общие термины, оборудование, Общие, заводы, Общие, заполнители, Общие, качество, Общие, коррозия, Общие, краски, Общие, стекло, Огнезащита материалов, Огнеупоры, Опалубка, Освещение, Отделочные материалы, Отклонения при испытаниях, Отходы, Отходы производства, Панели, Паркет, Перемычки, Песок, Пигменты, Пиломатериал, Питатели, Пластификаторы для бетона, Пластифицирующие добавки, Плиты, Покрытия, Полимерное оборудование, Полимеры, Половое покрытие, Полы, Прессовое оборудование, Приборы, Приспособления, Прогоны, Проектирование, Производства, Противоморозные добавки, Противопожарное оборудование, Прочие, Прочие, бетон, Прочие, замазки, Прочие, краски, Прочие, оборудование, Разновидности древесины, Разрушения материалов, Раствор, Ригеля, Сваи, Сваизабивное оборудование, Сварка, Сварочное оборудование, Свойства, Свойства бетона, Свойства вяжущих веществ, Свойства горной породы, Свойства камней, Свойства материалов, Свойства цемента, Сейсмика, Склады, Скобяные изделия, Смеси сухие, Смолы, Стекло, Строительная химия, Строительные материалы, Суперпластификаторы, Сушильное оборудование, Сушка, Сушка, деревообработка, Сырье, Теория и расчет конструкций, Тепловое оборудование, Тепловые свойства материалов, Теплоизоляционные материалы, Теплоизоляционные свойства материалов, Термовлажносная обработка бетона, Техника безопасности, Технологии, Технологии бетонирования, Технологии керамики, Трубы, Фанера, Фермы, Фибра, Фундаменты, Фурнитура, Цемент, Цеха, Шлаки, Шлифовальное оборудование, Шпаклевки, Шпон, Штукатурное оборудование, Шум, Щебень, Экономика, Эмали, Эмульсии, Энергетическое оборудование

Источник: Энциклопедия терминов, определений и пояснений строительных материалов

Энциклопедия терминов, определений и пояснений строительных материалов. - Калининград. Под редакцией Ложкина В.П.. 2015-2016.

construction_materials.academic.ru

Огнеупорная бетонная смесь

Изобретение относится к изготовлению огнеупорных изделий и выполнению монолитных футеровок тепловых агрегатов, эксплуатируемых при высокой температуре в контакте с агрессивными расплавленными материалами: шлаками, металлами, клинкерами, стеклами в различных отраслях промышленности. Технический результат - уменьшение газопроницаемости и повышение коррозионной стойкости. Огнеупорная бетонная смесь содержит огнеупорный наполнитель на основе оксида алюминия различных фракций, алюмомагнезиальную шпинель, реактивный глинозем и/или кальцинированный глинозем, кальцийалюминатный цемент, дефлокулянт и органическое волокно, при этом согласно изобретению алюмомагнезиальная шпинель представлена фракциями 0-1 мм и менее 8 мкм и/или менее 3 мкм при следующем соотношении компонентов, мас.%: огнеупорный наполнитель на основе оксида алюминия фракции 0-12 мм - основа, алюмомагнезиальная шпинель фракции 0-1 мм - 2-18, алюмомагнезиальная шпинель фракции менее 8 мкм и/или фракции менее 3 мкм - 3-14, кальцийалюминатный цемент - 3-18, реактивный и/или кальцинированный глинозем - 5-15, дефлокулянт, сверх 100%, - 0,01-1,0, органическое волокно, сверх 100%, - 0,02-0,07. Дополнительно огнеупорная бетонная смесь может содержать микросилику в количестве 0,2-0,5 мас.% (сверх 100%) и стальное волокно в количестве 0,1-3,5 мас.% (сверх 100%). 2 з.п. ф-лы, 1 табл.

 

Изобретение относится к изготовлению огнеупорных изделий и выполнению монолитных футеровок тепловых агрегатов, эксплуатируемых при высокой температуре в контакте с агрессивными расплавленными материалами: шлаками, металлами, клинкерами, стеклами в различных отраслях промышленности.

Известна огнеупорная бетонная смесь для изготовления низкоцементного огнеупорного бетона, содержащая огнеупорный заполнитель на основе оксида алюминия и связующее, представляющее собой комплекс тонкодисперсных материалов, в качестве комплексного связующего используют Al2O3 или смесь Al2O3 и SiO2, высокоглиноземистый кальцийалюминатный цемент, оксид магния или алюмомагнезиальную шпинель и дефлокулянт при следующем соотношении компонентов, мас. %: огнеупорный заполнитель фр. 7-3 мм - 25-45, фр. 3-1 мм - 15-35, фр. 1-0 мм - 20-45, Al2O3 или смесь Al2O3 и SiO2 фр. 6-0,1 мкм - 2-25, высокоглиноземистый кальцийалюминатный цемент фр. < 40 мкм - 2-8, MgO или алюмомагнезиальная шпинель фр. < 20 мкм - 5-15, дефлокулянт - 0,1-1,5 (RU 2140407 от 18.01.1999, С04В 35/66).

Недостатком данного изобретения является отсутствие указания на долю SiO2 в составе бетонной смеси: превышение определенного процента резко снижает устойчивость к воздействию агрессивной среды. Отсутствие супертонкой алюмомагнезиальной шпинели (размером менее 8 мкм) не позволяет сформировать микропористую структуру, устойчивую к пропитке металлургическими шлаками и расплавам цементного клинкера. Кроме того, отсутствие органического волокна затрудняет процесс удаления паров воды в процессе сушки и провоцирует растрескивание огнеупора (изделия или монолитной футеровки).

Известна также огнеупорная бетонная смесь, включающая 60-61% табулярного глинозема фракций ¼ - 8 mesh, 8-14 mesh, 28-48 mesh, <48 mesh, 11-23% алюмомагниевой шпинели фракций 0-0,09 мм, 0-0,5 мм, 0,5-1 мм (0-0,5 мм, 0,5-1 мм), 10-11% реактивного глинозема, 6-18% кальцийалюминатного цемента (СМА72), воду, гексаметафосфат натрия, борную кислоту (US 6730159 от 04.05.2004 г., С04В 35/66).

Отсутствие супертонкой алюмомагнезиальной шпинели (размером менее 8 мкм) в нужном количестве и в нужном соотношении в составе матричной части огнеупора существенно снижает устойчивость огнеупора к воздействию агрессивных расплавов (шлаки, цементный клинкер и т.д.) при эксплуатации огнеупора вследствие не оптимальной поровой структуры. Ограничение содержания реактивного глинозема 10-11% не позволяет регулировать термомеханические свойства изделий и футеровок, изготовленных из предлагаемой бетонной смеси. Отсутствие органического волокна затрудняет процесс удаления паров воды в процессе сушки и провоцирует растрескивание огнеупора (изделия или монолитной футеровки).

Наиболее близка к заявляемой огнеупорная бетонная смесь для изготовления низкоцементного бетона, содержащая огнеупорный заполнитель на основе оксида алюминия фр. 6-3 мм 20-25%, фр. 3-1 мм 13-25%, фр. 1-0 мм 8-20% и алюмомагнезиальную шпинель фр. 0,5-0 мм 10-20%, меламиновый или поликарбоксилатный пластификатор 0,045-0,07% (сверх 100%), тонкодисперсную матрицу фр. < 0,063 мм 15-30% и высокоглиноземистый цемент фр. 0,045 мм 2-8%, диспергирующий глинозем фр. 0,0075 0,2-0,4% (сверх 100%). В качестве тонкодисперсной матрицы смесь содержит, мас.%: корунд фр. < 0,063 мм 35-40, реактивный глинозем фр. < 0,005 мм 35-40 и алюмомагнезиальную шпинель фр. < 0,063 мм 30-20. Огнеупорная бетонная смесь дополнительно содержит органическое волокно 0,02-0,05 мас.% (сверх 100%) (RU 2320617 от 10.02.2006 г, С04В 35/66).

Отсутствие супертонкой алюмомагнезиальной шпинели (размером менее 8 мкм) в нужном количестве и в нужном соотношении в составе матричной части огнеупора существенно снижает устойчивость огнеупора к воздействию агрессивных расплавов (шлаки, цементный клинкер и т.д.) при эксплуатации огнеупора вследствие не оптимальной поровой структуры.

Технический результат, достигаемый в заявленном изобретении, заключается в получении поровой структуры огнеупора (изделия или монолитной футеровки), где снижена доля сообщающихся пор, снижена газопроницаемость и в процессе эксплуатации огнеупора имеет место высокая устойчивость к воздействию агрессивных компонентов.

Заявленный технический результат достигается в результате того, что предлагаемая огнеупорная бетонная смесь содержит огнеупорный наполнитель на основе оксида алюминия различных фракций, алюмомагнезиальную шпинель, реактивный глинозем и/или кальцинированный глинозем, кальцийалюминатный цемент, дефлокулянт и органическое волокно, при этом алюмомагнезиальная шпинель представлена фракциями 0-1 мм и менее 8 мкм и/или менее 3 мкм, при следующем соотношении компонентов, мас.%:

огнеупорный наполнитель на основе
оксида алюминия фракции 0-12 мм основа
алюмомагнезиальная шпинель фракции 0-1 мм 2-18
алюмомагнезиальная шпинель фракции менее 8 мкм
и/или фракции менее 3 мкм 3-14
кальцийалюминатный цемент 3-18
реактивный и/или кальцинированный глинозем 5-15
дефлокулянт 0,01-1,0
органическое волокно 0,02-0,07

Кроме того, смесь дополнительно может содержать микросилику в количестве 0,2-0,5 мас.%, сверх 100%, и стальное волокно в количестве 0,1-3,5 мас.%, сверх 100%.

Огнеупорный наполнитель может быть представлен плавленым корундом с содержанием основного вещества (93-99% Al2O3), табулярным глиноземом, комбинацией различных фракций этих материалов, позволяющей обеспечить максимально плотную упаковку зерен в структуре огнеупора. В контексте настоящего изобретения огнеупорный наполнитель фракции 0-12 мм означает, что указанный наполнитель может быть представлен различными комбинациями фракций внутри обозначенного диапазона (0-12 мм), в частности: 12-8 мм, 8-5 мм, 6-3 мм, 6-4 мм, 4-2 мм, 4-1 мм, 3-1 мм, 2-0 мм, 1-0 мм, 0,5-0 мм, менее 0, 088 мм, менее 0,063 мм, менее 0,045 мм, менее 0,020 мм.

Алюмомагнезиальная шпинель может быть изготовлена плавкой в руднотермических печах или спеканием в шахтных или иных печах, предлагаемые пределы содержания этого компонента в сочетании с его фракционным составом позволяют распределить этот компонент в матричной части огнеупорной бетонной смеси оптимальным образом.

Структура матрицы и стыка матрицы с наполнителем за счет близкого ТКЛР корунда (8,8·10-6К-1) как основного наполнителя (плавленый корунд, табулярный глинозем) и компонента, присутствующего в матричной части (реактивный и/или кальцинированный глинозем), в сочетании с алюмомагнезиальной шпинелью (ТКЛР 8,0·10-6К-1) плотная во всем интервале температур службы огнеупора. Проходящие процессы спекания, образования твердых растворов не сопровождаются объемными изменениями фаз, поэтому не возникают и микротрещины.

Использование алюмомагнезиальной шпинели фракции более 1 мм приведет к ослаблению структуры в рабочей части огнеупора в процессе службы в тепловом агрегате. При использовании менее 2% алюмомагнезиальной шпинели обозначенной фракции (0-1 мм) не будет получен огнеупор с низкой газопроницаемостью, высокой устойчивостью к воздействию газообразного агрессивного агента и достаточной высокотемпературной прочностью. При превышении 18% алюмомагнезиальной шпинели в составе бетонной смеси неизбежно снижение устойчивости к воздействию агрессивных компонентов из окружающей среды (расплавы шлака, клинкера, боросодержащих стекол и т.д.).

Алюмомагнезиальную шпинель фракции менее 8 и менее 3 мкм получают в процессе помола алюмомагнезиальной шпинели. Например, материал (указанная шпинель) синтезируется в шахтной или руднотермической печи с последующим дроблением и помолом в атриттерной мельнице, шаровой мельнице либо в ином агрегате. Возможно использование и тонкомолотого материала, в котором алюмомагнезиальная шпинель получена в процессе реакции "in-situ", например, в процессе производства кальций алюминатного цемента (под маркой СМА 72, где шпинель составляет 68-72%, остальное алюминаты кальция, причем шпинель менее 8 мкм 100%, в том числе менее 3% не менее 50%) или в процессе высокотемпературного синтеза из соответствующих смесей солей магния и алюминия, получаемых механическим путем, либо смешением растворов с последующим высушиванием и обжигом смеси.

Установлено, что дополнительное наличие в огнеупорной бетонной смеси менее 3% и более 14% алюмомагнезиальной шпинели фракции менее 8 мкм и/или 3 мкм не создает структуры, устойчивой к воздействию агрессивных компонентов. Наличие связей наполнитель и глинозем (реактивный и/или кальцинированный) с менее чем 3% указанной алюмомагнезиальной шпинели через твердый раствор на контакте этих материалов недостаточно для достижения заявленного технического результата, избыток твердого раствора, обогащенного оксидом магния, при введении более чем 14% указанной алюмомагнезиальной шпинели в матричной части огнеупора ухудшает его шлакоустойчивость.

При наличии в составе огнеупорной бетонной смеси алюмомагнезиальной шпинели фракции менее 3 мкм пределы концентрации этого материала закономерно изменяются в меньшую сторону. Целесообразность использования столь мелкого материала определяется экономической составляющей, так как увеличение энергетических затрат на измельчение приводит к удорожанию и тонкомолотого компонента, и изделий, и монолитных футеровок с его использованием.

Пределы содержания кальцийалюминатного цемента (3-18%) определены опытным путем. Кальций алюминатный цемент может содержать 35-10% СаО, остальное - глинозем и/или глиноземсодержащий компонент в сочетании с реактивным и/или кальцинированным глиноземом в указанных количествах, обеспечивающих формирование гидравлической связки при оптимальном соотношении Al2O3 и СаО. Алюминаты кальция, в основном, отвечают за прочностные свойства огнеупорного бетона (являются вяжущим), причем к нижнему пределу (3-8%) ближе применение кальцийалюминатного цемента с 25-35% СаО (например, цемент марки Secar 71, СА-270), а к среднему (8-12%) с 15-25% СаО (например, цемент марки СА-25) и к верхнему пределу (12-18%) с 10-15% СаО (например, цемент марки СМА 72, где содержится 28-32% алюминатов кальция, остальное алюмомагнезиальная шпинель), возможно и сочетание различных цементов в составе смеси в обозначенных пределах (3-18%) для придания прочности изделию или монолитной футеровке при их изготовлении за счет вяжущих свойств композиции и в то же время достаточной высокотемпературной прочности при формировании керамической связки, при температуре службы огнеупора в сочетании с оптимальной устойчивостью к воздействию агрессивных компонентов. Необходимость использования реактивного глинозема и/или кальцинированнного глинозема в сочетании с кальцийалюминатным цементом позволяет существенно упрочнить структуру даже при минимальном количестве упомянутого цемента. Чем больше содержание СаО в сухой массе, тем ниже устойчивость к воздействию шлаков, глиноземы позволяют снизить количество используемого цемента. Заявленные пределы содержания глинозема определены из практики, при использовании более дорогого реактивного глинозема количество глинозема может быть уменьшено, при увеличении доли кальцинированного глинозема целесообразно использовать большее суммарное количество глинозема и при этом необходимо для конкретной задачи определять соотношение глинозема и кальций алюминатного цемента.

Минимизация сообщающихся пор за счет наличия в матрице одновременно с кальций алюминатным цементом алюмомагнезиальной шпинели фракции менее 8 мкм и/или фракции менее 3 мкм способствует формированию газоплотной структуры и одновременно препятствует удалению паров воды в процессе сушки.

Использование дефлокулянта - под дефлокулянтом в данном случае понимаем органический (лимонная кислота, меламиновый, поликарбоксилатный и полиакрилатный пластификатор, соли глютаминовой кислоты и т.д.) и/или неорганический (полифосфат натрия, борная кислота и т.д.) компонент, который позволяет регулировать процесс схватывания бетона в зависимости от температуры окружающей среды и требований к времени схватывания. Например, при изготовлении крупногабаритных изделий время схватывания требуется увеличить для того, что бы последующие порции свежеприготовленного бетона образовывали единое целое с предыдущими. Дефлокулянт, например меламиновый или поликарбоксилатный пластификатор, регулирует растекаемость огнеупорного бетона, в том числе его сплошность, при заполнении формы или зазора между шаблоном и металлической стенкой при выполнении монолитной футеровки. Введение в состав огнеупорной бетонной смеси менее 0,01% дефлокулянта не оказывает влияния на сроки схватывания и растекаемость бетона. Превышение заявленного верхнего предела количества дефлокулянта способствует снижению стойкости огнеупора в службе, так как необходимо увеличение времени выстаивания бетона до сушки и разогрева. Увеличение времени на эти операции не всегда поддается учету, особенно для крупногабаритных изделий.

Наличие органического волокна формирует каналы для интенсивного пароудаления в процессе сушки и нагрева огнеупора. Можно вводить любые органические волокна, температура плавления которых не превышает 320°C. Пределы внесения в огнеупорную бетонную смесь органического волокна, например полипропиленового или полиамидного длиной 6-12 мм с поперечным сечением 15-25 мкм, определены экспериментально. При внесении менее 0,02% волокна отсутствует эффект ускорения процесса сушки огнеупора, при внесении более 0,07% имеет место наличие избытка сообщающихся пор при температуре службы, что снижает устойчивость к воздействию жидких и газообразных агрессивных агентов.

Дополнительно в огнеупорную бетонную смесь можно вводить металлическое волокно (стальную фибру) в количестве 0,1-3,5%. Наличие металлического волокна армирует структуру изделия и монолитной футеровки, что способствует замедлению процесса разрушения огнеупора при его растрескивании.

Дополнительный положительный эффект по увеличению шлакоустойчивости достигается введением в состав огнеупорной бетонной смеси фиксированного количества микросилики. Эффект особенно ощутим при наличии в атмосфере теплового агрегата агрессивных материалов в газовой фазе. Наличие микросилики в заявляемом количестве (0,2-0,5%) способствует возникновению в матричной части и на контакте матрицы с наполнителем барьерного слоя, сравнительно легкоплавкой жидкости в системе Al2O3-MgO-CaO-SiO2 (Тпл 1300-1450°C), с преобладанием высокотемпературных соединений и твердых растворов, при наличии упомянутых более низкоплавких фаз. Барьерный слой препятствует пропитке поровой структуры агрессивными компонентами в газовой фазе и жидкой фазе. Наличие жидкости в огнеупоре при температуре его эксплуатации сопровождается заполнением (запечатыванием устьев) пор этой жидкостью и резким снижением газопроницаемости сформировавшегося барьерного слоя. Проникающие в футеровку металлургического агрегата агрессивные газообразные и жидкофазные компоненты (железо-, марганецсодержащие, в первую очередь, или хлор-, серо-, щелочесодержащие) не преодолевают сформировавшийся барьер в толще огнеупора в зоне температуры 1350-1450°C.

Экспериментально установлено, что при увеличении содержания микросилики более 0,5% интенсифицируется взаимодействие шлака с огнеупором именно по пленкам легкоплавких алюмо-кальций-магний силикатов, в то время как при введении менее 0,2% микросилики образующееся количество жидкой фазы недостаточно для перекрытия доступа газовой фазы на всех участках структуры огнеупора.

Далее приведен конкретный пример осуществления изобретения, не исключающий другие варианты в пределах формулы изобретения. Исходные компоненты огнеупорной сухой смеси (табл. 1) перемешиваются в смесителе при увлажнении водой питьевого качества.

В качестве сырьевых материалов для приготовления сухой огнеупорной бетонной смеси использовали: табулярный глинозем марки Т60/Т64, плавленый белый корунд с содержанием 98,3% Al2O3, спеченный глинозем марки BSA 96 требуемых фракций, спеченная алюмомагнезиальная шпинель марки MR 78 (фракции 0-1 мм), алюмомагнезиальная шпинель фракции менее 8 мкм и менее 3 мкм, полученная помолом в аттриторной мельнице, высокоглиноземистый цемент марок Secar 71 и СА 25 (содержащие 100% алюминатов кальция) и марки СМА 72, в том числе крупностью менее 3 мкм (не менее 50%), реактивный глинозем марки CL 270 и кальцинированный глинозем марки СТ 9G, в качестве дефлокулянта использовали поликарбоксилатный пластификатор марки RCE-2, а также микросилику марки Microsilica 971. Увлажненный бетон размещается в формы под воздействием вибрации с вертикально направленной амплитудой, частота 50 Гц, амплитуда 0,2-0,4 мм, изготовленные из полиуретана (куб с ребром 70 мм и выемкой в форме усеченного конуса высотой 40 мм). Полученные образцы в виде тиглей подвергаются термообработке при максимальной температуре 380°C. В тигель помещали таблетку модельного шлака (шлак из сталеразливочного ковша) высотой 25 мм состава, мас.%: 48% СаО, 15% Al2O3, 20% SiO2, 12% FeO и 5% Fe2O3. Тигли с шлаком размещали в муфель, обжигали при 1600°C в течение 4 часов, остывшие тигли разрезали по диагонали и, используя планиметр (по площади), определяли величину эрозии стенки и площадь пропитки + коррозии. Полученные результаты также приведены в табл. 1. Газопроницаемость определяли на цилиндрах диаметром 50 мм, изготовленных по той же технологии. Определение газопроницаемости проводили на установке по ГОСТ 11573-98.

Огнеупоры из огнеупорной сухой смеси, изготовленные в соответствие с заявленным составом, характеризуются повышенной устойчивостью к воздействию агрессивного шлака и меньшей газопроницаемостью.

Примечание: при введении в состав сухой смеси кальций алюминатного цемента марки СМА 72 (пример 2) в количестве 18% вводится кальций алюминатов (вяжущего) 6% и шпинели фракции менее 8 мкм - 12%;

пример 7 - введен цемент СМА 72 в количестве 9%, в том числе кальций алюминатов (вяжущего) 3% и шпинели фракции менее 8 мкм - 6%;

пример 9 - введен цемент СМА 72 в количестве 12%, в том числе кальций алюминатов (вяжущего) 4% и шпинели фракции менее 8 мкм - 8%;

пример 11 - введен цемент СМА 72 в количестве 15%, в том числе кальций алюминатов (вяжущего) 5% и шпинели фракции менее 8 мкм - 10%.

1. Огнеупорная бетонная смесь, содержащая огнеупорный наполнитель на основе оксида алюминия различных фракций, алюмомагнезиальную шпинель, реактивный глинозем и/или кальцинированный глинозем, кальцийалюминатный цемент, дефлокулянт и органическое волокно, отличающаяся тем, что алюмомагнезиальная шпинель представлена фракциями 0-1 мм и менее 8 мкм и/или менее 3 мкм при следующем соотношении компонентов, мас.%:

огнеупорный наполнитель на основе
оксида алюминия фракции 0-12 мм основа
алюмомагнезиальная шпинель фракции 0-1 мм 2-18
алюмомагнезиальная шпинель фракции менее 8 мкм
и/или фракции менее 3 мкм 3-14
кальций алюминатный цемент 3-18
реактивный и/или кальцинированный глинозем 5-15
дефлокулянт, сверх 100% 0,01-1,0
органическое волокно, сверх 100% 0,02-0,07

2. Огнеупорная бетонная смесь по п. 1, отличающаяся тем, что дополнительно содержит микросилику в количестве 0,2-0,5 мас.% (сверх 100%).

3. Огнеупорная бетонная смесь по пп. 1, 2, отличающаяся тем, что она дополнительно содержит стальное волокно в количестве 0,1-3,5 мас.% (сверх 100%).

www.findpatent.ru


Смотрите также