Трещиностойкость (вязкость разрушения) бетона. Вязкость бетона


Какими свойствами обладают бетонные смеси?

Реологические свойства бетонной смеси Бетонной смесью называют рационально составленную и тщательно перемешанную смесь компонентов бетона до начала процессов схватывания и твердения. Состав бетонной смеси определяют, исходя из требований к самой смеси и к бетону.

Основной структурообразующей составляющей в бетонной смеси является цементное тесто. Независимо от вида бетона бетонная смесь должна удовлетворять двум главным требованиям: обладать хорошей удобоукладываемостью, соответствующей применяемому способу уплотнения и сохранять при транспортировании и укладке однородность, достигнутую при приготовлении. При действии возрастающего усилия бетонная смесь вначале претерпевает упругие деформации, когда же преодолена структурная прочность, она течет подобно вязкой жидкости. Поэтому бетонную смесь называют упруго-пластично-вязким телом, обладающим свойствами твердого тела и истинной жидкости. Свойство бетонной смеси разжижаться при механических воздействиях и вновь загустевать в спокойном состоянии называется тиксотропией.

Технические свойства бетонной смеси При изготовлении железобетонных изделий и бетонировании монолитных конструкций самым важным свойством бетонной смеси является удобоукладываемость (или удобоформуемость), т.е. способность заполнять форму при данном способе уплотнения, сохраняя свою однородность.

Для оценки удобоукладываемости используют три показателя: подвижность бетонной смеси (П), являющуюся характеристикой структурной прочности смеси; жесткость (Ж), являющуюся показателем динамической вязкости бетонной смеси; связность, характеризуемую водоотделением бетонной смеси после ее отстаивания.

Подвижность бетонной смеси характеризуется измеряемой осадкой (см) конуса (ОК), отформованного из бетонной смеси, подлежащей испытанию. Подвижность бетонной смеси вычисляют как среднее двух определений, выполненных из одной пробы смеси. Если осадка конуса равна нулю, то удобоукладываемость бетонной смеси характеризуется жесткостью. Жесткость бетонной смеси характеризуется временем (с) вибрирования, необходимым для выравнивания и уплотнения предварительно отформованного конуса бетонной смеси в приборе для определения жесткости.

Классификация бетонных смесей Связность бетонной смеси обуславливает однородность строения и свойств бетона. Очень важно сохранить однородность бетонной смеси при перевозке, укладке в форму и уплотнении. При уплотнении подвижных бетонных смесей происходит сближение составляющих ее зерен, при этом часть воды отжимается вверх. Уменьшение количества воды затворения при применении пластифицирующих добавок и повышение водоудерживающей способности бетонной смеси путем правильного подбора зернового состава заполнителей являются главными мерами борьбы с расслоением подвижных бетонных смесей.

Удобоукладываемость бетонной смеси Количество воды затворения является основным фактором, определяющим удобоукладываемость бетонной смеси. Вода затворения (В, кг/м3) распределяется между цементным тестом (Вц) и заполнителем (Взап): В= Вц + Взап. Количество воды в цементном тесте определяют его реологические свойства: предельное напряжение сдвига и вязкость, а следовательно, и технические свойства бетонной смеси — подвижность и жесткость.

Водопотребность заполнителя Взап является его важной технологической характеристикой; она возрастает с увеличением суммарной поверхности зерен заполнителя и поэтому велика у мелких песков. Для обеспечения требуемой прочности бетона величина водоцементного отношения должна сохраняться постоянной, поэтому возрастание водопотребности вызывает перерасход цемента. При мелких песках он достигает 15-25%, поэтому мелкие пески следует применять после обогащения крупным природным или дробленым песком и с пластифицирующими добавками, снижающими водопотребность.

Деформативные свойства бетона Под нагрузкой бетон ведет себя иначе, чем сталь и другие упругиe материалы. Конгломератная структура бетона определяет его поведение при возрастающей нагрузке осевого сжатия.

Область условно упругой работы бетона — от начала нагружения до напряжения сжатия, при котором по поверхности сцепления цементного камня с заполнителем образуются микротрещины.

Опыты подтвердили, что при небольших напряжениях и кратковременном нагружения для бетона характерна упругая деформация, подобная деформации пружины. Модуль упругости бетона возрастает при увеличении прочности и зависит от пористости: увеличение пористости бетона сопровождается снижением модуля упругости. При одинаковой марке по прочности модуль упругости легкого бетона на пористом заполнителе меньше в 1,7-2,5 раза тяжелого. Еще ниже модуль упругости ячеистого бетона. Таким образом, упругими свойствами бетона можно управлять, регулируя его структуру. Модуль упругости бетона при сжатии и растяжении принимают равными между собой:

Есж = Ер = Еб.

Ползучестью называют явление увеличения деформаций бетона во времени при действии постоянной статической нагрузки. Ползучесть зависит от вида цемента и заполнителей, состава бетона, его возраста, условий твердения и влажности. Меньшая ползучесть наблюдается при применении высокомарочных цементов и плотного заполнителя — щебня из изверженных горных пород. Пористый заполнитель усиливает ползучесть, поэтому легкие бетоны имеют большую ползучесть по сравнению с тяжелыми. Преждевременное высыхание бетона ухудшает структуру и увеличивает его ползучесть. Однако насыщение водой затвердевшего бетона может вызвать рост ползучести. Ползучесть и связанная с ней релаксация напряжений может играть отрицательную роль. Например, ползучесть бетона приводит к потере натяжения; в предварительно напряженных железобетонных конструкциях.

Усадка и набухание бетона

При твердении на воздухе происходит усадка бетона, т.е. бетон сжимается и линейные размеры бетонных элементов сокращаются. Усадка слагается из влажностной, карбонизационной и контракционной составляющих.

Вследствие усадки бетона в железобетонных и бетонных конструкциях возникают усадочные напряжения, поэтому сооружения большой протяженности разрезают усадочными швами во избежание появления трещин. Ведь при усадке бетона 0,3 мм/м в сооружении длиной 30 м общая усадка составляет около 10 мм. Массивный бетон высыхает снаружи, а внутри он еще долго остается влажным. Неравномерная усадка вызывает растягивающие напряжения в. наружных слоях конструкции и появление внутренних трещин на контакте с заполнителем и в самом цементном камне.

Для снижения усадочных напряжений и сохранения монолитности конструкций стремятся уменьшить усадку бетона. Наибольшую усадку имеет цементный камень. Введение заполнителя уменьшает количество вяжущего в единице объема материала, при этом образуется своеобразный каркас из зерен заполнителя, препятствующий усадке. Поэтому усадка цементного раствора и бетона меньше, чем цементного камня.

Бетон наружных частей гидротехнических сооружений, цементно-бетонных дорог периодически увлажняется и высыхает. Колебания влажности бетона вызывают попеременные деформации усадки и набухания, которые могут вызвать появление микротрещин и разрушение бетона.

Морозостойкость бетона Морозостойкость бетона определяют путём попеременного замораживания в холодильной камере при температуре от 15 до 20°С и оттаивания в воде при температуре 15-20°С бетонных образцов кубов с размерами ребра 10, 15 или 20 см (в зависимости от наибольшей крупности заполнителя). Образцы испытывают после 28 сут выдерживания в камере нормального твердения или через 7 сут после тепловой обработки. Контрольные образцы, предназначенные для испытания на сжатие в эквивалентном возрасте, хранят в камере нормального твердения. Морозостойкость бетона зависит от качества примененных материалов и капиллярной, пористости бетона. Объем капиллярных пор оказывает решающее влияние на водопроницаемость и морозостойкость бетона. Морозостойкость бетона значительно возрастает, когда капиллярная пористость менее 7%.

Водонепроницаемость бетона С уменьшением объема капиллярных макропор снижается водонепроницаемость и одновременно повышается морозостойкость бетона. Для уменьшения водонепроницаемости в бетон при его изготовлении вводят уплотняющие (алюминат натрия) и гидрофобизующие добавки. Нефтепродукты (бензин, керосин и др.) имеют меньшее, чем у воды, поверхностное натяжение, поэтому они легче проникают через обычный бетон. Для снижения фильтрации нефтепродуктов в бетонную смесь можно вводить специальные добавки (хлорное железо и др.). Проницаемость бетона по отношению к воде и нефтепродуктам резко уменьшается, если вместо обычного портландцемента применяют расширяющийся.

Теплофизические свойства бетона Теплопроводность — наиболее важная теплофизическая характеристика бетона, в особенности применяемого в ограждающих конструкциях зданий.

Теплопроводность тяжелого бетона в воздушно-сухом состоянии 1,2 Вт/(м.°С), т.е. она в 2-4 раза больше, чем у легких бетонов (на пористых заполнителях и ячеистых). Высокая теплопроводность является недостатком тяжелого бетона. Панели наружных стен из тяжелого бетона изготавливают с внутренним слоем утеплителя.

Теплоемкость тяжелого бетона изменяется в узких пределах -0,75-0,92 Вт/(м.С°). Линейный коэффициент температурного расширения бетона составляет около 0,00001 °С, следовательно, при увеличении температуры на 50 °С расширение достигает примерно 0,5 мм/м. Во избежание растрескивания сооружений большой, протяженности разрезают температурно-усадочными швами.

Крупный заполнитель и раствор, составляющие бетон, имеют различный коэффициент температурного расширения и будут по разному деформироваться при изменении температуры.

Большие колебания температуры (более 80°С) смогут вызвать внутреннее растрескивание бетона вследствие различного теплового расширения крупного заполнителя и раствора. Характерные трещины распространяются по поверхности заполнителя, некоторые из них образуются в растворе, а иногда и в слабых зернах заполнителя. Внутреннее растрескивание можно предотвратить, если позаботиться о подборе составляющих бетона с близкими коэффициентами температурного расширения.

Статья прочитана 404 раз(a).

skosr.ru

Производство бетона - ударная вязкость, стойкость к ударам и износу

Примерами конструкций, подвергающихся ударам, могут служить бетонные сваи, полы промышленных зданий из раствора или бетона, на которые мостовым краном регулярно сбрасываются тяжелые грузы, бетонные дамбы, подвергающиеся ударам морских волн с камнями и галькой, фундаменты, испытывающие вибрации, которые представляют собой по сути дела серии кратких ударов (здесь речь идет также о пределе усталости), бетонные пирсы, по которым ударяют пристающие суда, конструкции, подвергающиеся артиллерийскому обстрелу (сооружения военного назначения). Наиболее полно в лабораториях исследованы вопросы, связанные с производством сборных обычных или преднапряженных железобетонных свай, забиваемых в грунт копром. Известно, что во избежание разрушения бетона свай копровой бабой необходимо принимать различные меры предосторожности, несмотря на то, что верхняя часть сваи обычно хорошо упрочняется и имеет стальной оголовник, выдерживающий высокие нагрузки. Существует немало способов проведения лабораторных испытаний на прочность при ударе, однако все они основаны на одном общем принципе. Молот определенной массы сбрасывается в свободном падении на бетонный образец. Считают число ударов, необходимых для разрушения бетона, или отмечают высоту падения, достаточную для разрушения образца за один удар. Энергию удара (кгм) легко подсчитать. Скорость при ударе v (м/с) определяется по формуле: v = ?2gh, где g — 9,81, h — высота, м. Таким образом, груз массой 50 кг, падающий с высоты 1 м, обладает такой же энергией удара, какую имеет груз массой 12,5 кг, падающий с высоты 4 м, однако скорость этого последнего в момент удара будет в два раза выше. Груз можно сбрасывать на бетонный цилиндр размером 15X30 см или 16X32 см, на бетонную плиту, лежащую ровно на песчаной постели, или на бетонную плиту, расположенную на двух опорах. В США нормализованы испытания на разрушение природного камня, которые состоят в сбрасывании груза массой 2 кг с высоты, превышающей 1м, до разрушения образца. Западногерманские нормы включают описание аппаратуры, также применяемой для испытания природного камня. Масса груза 50 кг, а максимальная высота падения 1,5 м. Подобный метод применяют и для испытаний бетона, из которого изготовляют цилиндрические образцы размером 15×30 см с оголовником толщиной 8 см. Число ударов, которое способен выдержать образец, начинает быстро уменьшаться, начиная с определенной высоты, примерно 60 см (по данным этих испытаний). Хорошая прочность при сжатии (более 450 бар) — необходимое условие, но ее одной недостаточно для хорошей ударной вязкости.

Под ударами твердого тяжелого тела бетон не имеет времени приспособиться, поскольку деформации длятся очень короткое время и никакое перераспределение усилий невозможно. Поэтому весьма сильно возрастает роль местных дефектов материала и возникает необходимость получения высокой однородности состава. По всей видимости, наибольшее значение имеют такие факторы, как расход воды, тип заполнителя и условия выдерживания бетона. Существует явно выраженная зависимость между В/Ц и прочностью на удар. Как видно, для достижения достаточно хорошего сопротивления наносимым подряд ударам В/Ц бетонной смеси не должно превышать 0,45. Бетон гораздо лучше сопротивляется ударам, когда они наносятся после достаточно продолжительного предварительного выдерживания (2—3 месяца). По данным исследований, проводившихся Дамсом (1969 г.), можно рекомендовать следующие правила, которых следует придерживаться при изготовлении бетона с высокой ударной прочностью: применять цемент высоких марок с расходом 350—400 кг/м3, В/Ц не более 0,45, заполнителем должен служить щебень, частицы которого имеют шероховатую поверхность, неправильной формы, с низким модулем деформации, диаметром менее 30 мм и содержанием песка с частицами до 7 мм более 60%. Выдерживать бетон необходимо во влажном состоянии не менее 7 суток. Полученный бетон следует подвергать ударам не ранее чем через 28 суток, а если возможно, то через 90 суток.

lab-smr.ru

Физико-механические свойства бетонов — ТехЛиб

OLYMPUS DIGITAL CAMERAЗатвердевший бетон относится к материалам составного (конгломератного) типа, так как включает в себя заведомо раз­нородные компоненты — зерна заполнителей, скрепленные це­ментным камнем. Поэтому к важнейшим свойствам, опреде­ляющим качество цементного камня, относятся прочность и ад­гезия, т. е. способность к сцеплению с зернами заполнителя.

Основными показателями качества тяжелого бетона являют­ся прочность на сжатие и растяжение, морозостойкость и водо­непроницаемость.Прочность бетона в проектном возрасте характеризуют классами прочности на сжатие и осевое растяжение. Отличи­тельная особенность бетонных работ — значительная неоднород­ность получаемого бетона. Чем выше культура строительства, лучше качество приготовления и укладки бетона в конструкции, тем меньше колебания прочности. Следовательно, важно не только получить бетон заданной средней прочности, но и обес­печить ее во всем объеме изготовляемых конструкций.

Показателем, который учитывает возможные колебания ка­чества, является класс бетона. 

Класс бетона— численная харак­теристика какого-либо его свойства, принимаемая с гарантиро­ванной обеспеченностью (обычно 0,95). Это значит, что уста­новленное классом свойство, например прочность бетона, до­стигается не менее чем в 95 случаях из 100.

Понятие «класс бетона» позволяет назначать прочность с учетом ее фактической или возможной вариации.

ГОСТ 26633-91 устанавливает следующие классы тяжелого бетона по прочности на сжатие: В3,5; В5; В7,5; В10; В12,5; В15; В20; В25; ВЗ0; В35; В40; В45; В50; В55; В60; В65; В70; В75 и В80. Класс бетона по прочности на сжатие обозначают ла­тинской буквой В, справа от которой приписывают его предел прочности в МПа. Так, у бетона класса В15 предел прочно­сти при сжатии — не ниже 15 МПа с гарантированной обеспе­ченностью 0,95.

В необходимых случаях устанавливают также классы бетона по прочности на осевое растяжение, обозначаемый индексом Вt, и на растяжение при изгибе — Вtb.

На растяжение бетон работает намного хуже, чем на сжатие: предел прочности при растяжении в 10…20 раз меньше предела прочности при сжатии. Для повышения несущей способности, в особенности при изгибе и растяжении, бетон сочетают со сталь­ной арматурой, изготовляя железобетонные конструкции.

Марка бетона — это чис­ленная характеристика какого-либо его свойства, рассчитывае­мая как среднее значение результатов испытания образцов. При определении марок по прочности, морозостойкости, водонепро­ницаемости принимают нижнее предельное значение свойств, а марку по средней плотности определяют по верхнему предель­ному значению. В отличие от класса марка бетона не учитыва­ет колебаний прочности во всем объеме бетонируемой конст­рукции.

Марка по прочности на сжатие — наиболее распространенная характеристика бетона. Марку определяют испытанием на осе­вое сжатие бетонных образцов-кубов размерами 15x15x15 см в установленном проектном возрасте (обычно 28 сут.). Полученный при испытании предел прочности при сжатии как среднее арифметическое значение по двум наибольшим (в серии из трех образцов), выраженный в кгс/см2, является численной характеристикой марки.

Установлены следующие марки тяжелого бетона по прочно­сти на сжатие: М50; М75; М100; М150; М200; М250, МЗОО; М350; М400; М450; М500; М550; М600; М700; М800; М900 и М1000. В обозначении используют индекс «М». Например, марка бетона М200 означает, что его предел прочности при cжатии не менее 200 кгс/см2 .

Соотношение между классами и марками бетона неодно­значно и зависит от однородности бетона, оцениваемой с помо­щью коэффициента вариации. Чем меньше коэффициент вариа­ции, тем однороднее бетон. Класс бетона одной и той же марки существенно увеличивается, если снижают коэффициент вариа­ции. Например, при марке по прочности на сжатие МЗ00 и ко­эффициенте вариации 18 % получают бетон класса В 15, а при коэффициенте вариации 5 % — класса В20, т. е. на целую ступень выше. Это подчеркивает необходимость тщательного выполне­ния всех технологических рекомендаций, повышения техниче­ского уровня и культуры производства бетонных работ.

Прочность — основная характеристика бетона как конструк­ционного материала. Числовое значение прочности определяется действием многих факторов. К важнейшим из них относятся качество применяемых материалов и пористость бетона.

Бетон на портландцементе набирает прочность постепенно. При нормальной температуре и постоянном сохранении влажно­сти рост прочности бетона продолжается длительное время, но скорость набора прочности со временем затухает.

Таблица 1. Соотношение между марками и классами тяжелого бетона по прочности

Класс бетона

Средняя прочность бетона данного клас­са, кгс/см2

Ближайшая марка бетона

Отклонение средней прочности бетона дан­ного класса от марки, %

Сжатие

В3,5

45,8

М50

-9,2

В5

65,5

М75

-14,5

В7,5

98,2

М100

-1,8

В10

131,0

М150

-14,5

В12,5

163,7

М150

+8,4

В15

196,5

М200

-1,8

В20

261,9

М250

+4,5

В25

327,4

М350

-6,9

В30

392,9

М400

-1,8

В35

458,4

М450

+1,6

В40

523,9

М500

+5,0

В45

589,4

М600

-1,8

В80

654,8

М700

-6,9

В55

720,3

М700

+2,8

В60

785,8

М800

-1,8

В65

851,5

М900

-5,7

В70

917,0

М900

+1,8

В75

932,5

М1000

-1,8

В80

1048,0

М1000

+4,9

Осевое растяжение

Вt0.4

5,2

Рt5

+3,8

Вt0.8

10,5

Рt10

+4,8

Вt1.2

15,7

Рt15

+4,5

Вt1.6

20,9

Рt20

+4,3

Вt2.0

26,2

Рt25

+4,6

Вt2.4

31,4

Рt30

+4,5

Вt2.8

36,7

Рt35

+4,6

Вt3.2

41,9

Рt40

+4,5

Прочность Б. характеризуется их маркой (временным сопротивлением на сжатие, осевое растяжение или растяжение при изгибе). Марка по прочности на сжатие тяжёлых цементных, особо тяжёлых, лёгких и крупнопористых Б. определяется испытанием на сжатие бетонных кубов со стороной, равной 200 мм,изготовленных из рабочего состава и испытанных после определённого срока выдержки.

Для образцов монолитного Б. промышленных и гражданских зданий и сооружений срок выдержки при нормальном твердении (при температуре 20 град С и относительной влажности не ниже 90%) равен 28 сут. Прочность Б. в возрасте 28 сут R28 нормального твердения можно определять по формуле:R28 = aRц (Ц/В — б),где Рц — активность (прочность) цемента; Ц/В — цементно-водное отношение; а — 0,4-0,5 и б — 0,45-0,50 — коэффициенты, зависящие от вида цемента и заполнителей.

Для установления марки Б. гидротехнических массивных сооружений срок выдержки образцов равен 180 сут. Срок выдержки и условия твердения образцов Б. сборных изделий указываются в соответствующих ГОСТах. За марку силикатных и ячеистых Б. принимают временное сопротивление в кгс/см2 на сжатие образцов тех же размеров, но прошедших автоклавную обработку одновременно с изделиями (1 кгс/см2« 0,1 Мн/м2). Особо тяжёлые Б. имеют марки от 100 до 300 (~10-30 Мн/м2), тяжёлые Б. — от 100 до 600 (~10-60 Мн/м2).

Марки высокопрочных Б. — 800-1000 (~80-100 Мн/м2). Применение высокопрочных Б. наиболее целесообразно в центрально-сжатых или сжатых с малым эксцентриситетом колоннах многоэтажных промышленных и гражданских зданий, фермах и арках больших пролётов. Лёгкие Б. на пористых заполнителях имеют марки от 25 до 200 (~2,5-20 Мн/м2),высокопрочные Б. — до 400 (~40 Мн/м2),крупнопористые Б. — от 15 до 100 (~1,5-10 Мн/м2), ячеистые Б. — от 25 до 200(~2,5-20 Мн/м2), особо лёгкие Б. — от 5 до 50 (~0,5-5 Мн/м2). Прочность Б. на осевое растяжение ниже прочности Б. на сжатие примерно в 10 раз.

Требования по прочности на растяжение при изгибе могут предъявляться, например, к Б. дорожных и аэродромных покрытий. К Б. гидротехнических и специальных сооружений (телевизионные башни, градирни и др.), кроме прочностных показателей, предъявляются требования по морозостойкости, оцениваемой испытанием образцов на замораживание и оттаивание (попеременное) в насыщенном водой состоянии от 50 до 500 циклов.

К сооружениям, работающим под напором воды, предъявляются требования по водонепроницаемости, а для сооружений, находящихся под воздействием морской воды или др. агрессивных жидкостей и газов, — требования стойкости против коррозии. При проектировании состава тяжёлого цементного Б. учитываются требования к его прочности на сжатие, подвижности бетонной смеси и её жёсткости (технической вязкости), а при проектировании состава лёгких и особо тяжёлых Б. — также и к плотности. Сохранение заданной подвижности особенно важно при современных индустриальных способах производства; чрезмерная подвижность ведёт к перерасходу цемента, а недостаточная затрудняет укладку бетонной смеси имеющимися средствами и нередко приводит к браку продукции.

Подвижность бетонной смеси определяют размером осадки (в см)стандартного бетонного конуса (усечённый конус высотой 30 см, диаметром нижнего основания 20 см, верхнего — 10 см). Жёсткость устанавливается по упрощённому способу профессора Б. Г. Скрамтаева либо с помощью технического вискозиметра и выражается временем в сек,необходимым для превращения конуса из бетонной смеси в равновеликую призму или цилиндр. Эти исследования производят на стандартной лабораторной виброплощадке с автоматическим выключателем, используемой также при изготовлении контрольных образцов.Выбор бетонной смеси по степени её подвижности или жёсткости производят в зависимости от типа бетонируемой конструкции, способов транспортирования и укладки Б. Наряду с ценными конструктивными свойствами Б. обладает также и декоративными качествами. Подбором компонентов бетонной смеси и подготовкой опалубок или форм можно видоизменять окраску, текстуру и фактуру Б.; фактура зависит также и от способов механической и химической обработки поверхности Б. Пластическая выразительность сооружений и скульптуры из Б. усиливается его пористой, поглощающей свет поверхностью, а богатая градация декоративных свойств Б. используется в отделке интерьеров и в декоративном искусстве.

Марка бетона по морозостойкости F определяется числом циклов попеременного замораживания и оттаивания испыты­ваемых в возрасте 28 сут. в насыщенном водой состоянии об­разцов, при котором допускается снижение прочности бетона на сжатие не более чем на 15 %.

Марку по морозостойкости назначают и контролируют для бетона гидротехнических сооружений, мостовых и дорожных покрытий и др. Установлены следующие марки тяжелого бетона по морозостойкости в циклах: F50, F75, F100, F150, F200, F300, F400, F500, F600, F800, F1000.

Для приготовления морозостойких бетонов рекомендуется применять портландцемент и его разновидности: пластифициро­ванный, гидрофобный, быстротвердеющий и сульфатостойкий. Допустимое количество трехкальциевого алюмината С3А в клинкере для портландцемента в зависимости от марки бетона по морозостойкости должно составлять, %: для бетона марки F300 и выше — не более 5 %, для F200 — не более 7 %, для F100 -не более 10 %.

В цемент не рекомендуется вводить активные минеральные добавки, которые повышают водопотребность вяжущего в бето­не. Для сокращения водопотребности бетонной смеси и умень­шения доли микропор в бетоне следует использовать добавки поверхностно-активных веществ, оказывающих воздухововлекающее, микрогазообразующее, гидрофобизирующее или пла­стифицирующее действие на бетонную смесь. Для гидротехни­ческих сооружений с нормируемой морозостойкостью F200 и выше объем вовлеченного воздуха при максимальной крупности заполнителя 20 мм и В/Ц = 0,41…0,5 должен быть 2…4 %.

Морозостойкий бетон может быть получен при обеспечении точной дозировки составляющих материалов, тщательного пе­ремешивания, уплотнения и надлежащего ухода за твердеющим бетоном. При этом необходимо следить, чтобы не возникали деструктивные процессы при тепловой обработке бетона, кото­рые связаны с тепловым расширением составляющих, а также воды и воздуха в свежеуложенном бетоне.

При изготовлении бетонных и железобетонных конструкций повышенной морозостойкости (F200) для твердения бетона предпочтительны естественные условия при положительной температуре и сохранение одновременно его влажностного со­стояния в течение 10 дней.

Марку по водонепроницаемости назначают для бетона конструкций, которые должны обладать ограниченной прони­цаемостью при одностороннем давлении воды. За марку по во­донепроницаемости принимают наибольшее давление воды    (кгс/см), которое выдерживают бетонные образцы диаметром и высотой 150 мм при испытании по установленной методике. Ут­верждены следующие марки бетона по водонепроницаемости (кгс/см2): W2,W4, W6,W8, W10, W12, W14, W16,W18, W20.

Необходимо разделять факторы, определяющие водонепро­ницаемость бетона на стадии приготовления смеси, укладки и твердения бетона, и способы повышения водонепроницаемости затвердевшего материала.

Активность цемента. Замена цемента, имеющего активность 400 кгс/см2, цементом с активностью 500 кгс/см2 позволя­ет получить бетон с высокой степенью водонепроницаемости даже при увеличении на 15…20 % значения В/Ц и снижении на 7… 10 % расхода цемента.

Водоцементное отношение. С увеличением значения В/Ц качество цементного теста снижается, в твердеющем бетоне создается развитая система пор и капиллярных каналов. Так, при повышении В/Ц от 0,4 до 0,8 коэффициент фильтрации цемент­ного камня увеличивается в 10…20 раз.

На величину В/Ц при данной подвижности влияет расход цемента. Согласно СНиП 5.01.23-83, для бетона водонепрони­цаемостью W8 при формовании из бетонной смеси ОК = 5…9 см расход цемента должен составлять 475 кг/м3; В/Ц такого бетона не должно превышать 0,45.

Коэффициент раздвижки зерен крупного заполнителя. Зна­чения коэффициента а раздвижки зерен для водонепроницаемо­го бетона значительно выше соответствующих значений а, оп­ределенных из условия получения бетонов наибольшей прочно­сти. Это означает, что оптимальный по условию наибольшей водонепроницаемости состав бетона должен содержать меньше крупного заполнителя и больше растворной части, чем обычный бетон. 

 Условия твердения. Для водонепроницаемого бетона на обычных цементах наилучшие условия создаются при водном твердении, наихудшие — при воздушно-сухом. При этом способ­ность бетона пропускать воду может изменяться в сотни раз.

Возраст бетона. С увеличением возраста бетона изменяется характер его пористости: постепенно уменьшается объем макропор, которые как бы зарастают продуктами гидратации це­мента. Например, в возрасте 90 сут. водонепроницаемость бето­на возрастает в два раза по сравнению с маркой в 28 сут. Для гидротехнических сооружений в зависимости от условий работы марку бетона по водонепроницаемости определяют в возрасте 60, 90 или 180 сут.

Деформативность бетона. Бетон под нагрузкой ведет себя не как идеально упругое тело (например, стекло), а как упруго-вязко-пластичное тело. При небольших напряжениях (не более 0,2 от предела прочности) бетон деформируется как упругий материал. При этом его начальный модуль упругости зависит от пористости и прочности и составляет для тяжелых бетонов (2,2…3,5)*104 МПа (у высокопористых ячеистых бето­нов модуль упругости — около 1*104 МПа).

При больших напряжениях начинает проявляться пластиче­ская (остаточная) деформация, развивающаяся в результате рос­та микротрещин и пластических деформаций гелевой состав­ляющей цементного камня.

Усадка бетона. При твердении на воздухе происходит усад­ка бетона — сокращение линейных размеров до 0,3…0,5 мм на 1 м длины. Большие усадочные деформации — одна из причин образования трещин в бетоне. Особенно значительна усадка в начальный период твердения: в первые сутки она достигает 70 % от месячного значения.

Усадка бетона вызвана усадкой цементного камня, которая в свою очередь является следствием меньшего объема веществ, образовавшихся в результате гидратации цемента, чем началь­ный суммарный объем цемента и воды; сжатия цементного кам­ня капиллярным давлением, возникающим при испарении воды из бетона; уменьшения объема геля при его обезвоживании.

Усадка бетона увеличивается при повышении содержания цемента и воды, применении высокоалюминатных цементов, мелкозернистых и пористых заполнителей.

Огнестойкость. Под огнестойкостью бетона понимают его способность сохранять прочность при кратковременном воздей­ствии высоких температур, например при пожаре. При кратко­временном нагреве благодаря малой теплопроводности бетон прогревается на небольшую глубину, причем содержащаяся в нем вода (в том числе и кристаллизационная) испаряется, пони­жая температуру бетона. При длительном воздействии высоких температур в бетоне происходят необратимые химические изме­нения, сопровождающиеся потерей им прочности.

Для устройства конструкций топок, печей и промышленных труб применяют специальный жароупорный бетон на глинозе­мистом цементе и жаростойких заполнителях.

Читать по теме:
К разделу

Строительные материалы

R

tehlib.com

Вязкость и удобоукладываемость

Предельное количество воды, которое может содержаться в бетонной смеси зависит от механических воздействий на цементное тесто при транспортировке, вибрациях, укладке и т.д. Для оценки этого количества можно воспользоваться формулой:

Впред = 1,35·Нг·Ц+П·Вп+0,07·Sщ

где Нг – нормальная густота цементного теста, Вп – водопотребность песка, Sщ – удельная поверхность щебня, которая вычисляется по формуле:

Sщ = 1,6·(ρнщ/ρищ)·(a40+2a20+4a10+8a5),

где a – частные остатки на стандартных ситах в %.

Исходя из условия неподвижности крупных зерен в бетонной смеси, получим условие нерасслаиваемости смеси. На зерно крупного заполнителя действует две силы: сила тяжести и сила сопротивления среды. Первая равна

Q1 = πD3·(ρзап – ρраст)·g,

где D – средний диаметр зерна заполнителя, ρзап, ρраст – плотности заполнителя и раствора, g – ускорение свободного падения. Вторая сила равна:

Q2 = f·π·D2·τпред,

где f – коэффициент, учитывающий форму зерен. Его значение лежит в диапазоне от 0,65 до 1,00; τпред – предельное напряжение сдвига. Чтобы смесь не расслаивалась, необходимо выполнение условия:

Q1 < Q2,

откуда получим

τпред > D·(ρзап – ρраст)g/(6f).

Из последней формулы можно сделать вывод, что чем более крупные зерна находятся в бетонной смеси, тем более она склонна к расслаиваемости. В случае формы зерен близким к шарам, можно воспользоваться формулой Стокса для движения шаров в жидкости:

πD3g(ρзап – ρраст)/6 = 3πD·η·v,

где v – скорость оседания частиц; η – вязкость раствора, которую можно регулировать содержанием песка и цемента.

Удобоукладываемость и вязкость – величины обратнопропорциональные друг другу, при этом вязкость дисперсной системы (среды + коллоидные частицы) увеличивается пропорционально вязкости среды и концентрации дисперсных частиц. Применив это утверждение к цементному тесту, можно сделать вывод, что с увеличением количества воды уменьшается вязкость дисперсной системы и, соответственно, увеличивается удобоукладываемость. Изменение же количества песка или цемента приводит к неоднозначным последствиям – с одной стороны будет увеличиваться вязкость растворной части (поскольку увеличивается дисперсная фаза относительно воды или цементного теста), а с другой – увеличивается само содержание растворной части, тем самым уменьшается содержание дисперсной фазы – частиц крупного заполнителя – относительно среды: цементное тесто + песок. В результате эти два фактора взаимно компенсируют друг друга и служат основой для «закона» о «постоянстве водопотребности смеси».

Удобоукладываемость бетонной смеси можно повысить путем добавления цементного теста с сохранением отношения Ц/В, которое обеспечивает прочность бетона. Однако этот способ не является рациональным, поскольку наиболее прочные коагуляционные структуры, ухудшающие удобоукладываемость, образуются в местах контакта цементного теста с зернами крупного заполнителя. Следовательно, разработав метод разрушения коагуляционных структур вблизи контактов, можно улучшить удобоукладываемость. Один из этих методов – предварительное увлажнение заполнителей с общим сохранением В/Ц. Например, согласно экспериментам увлажнение до 3% песка снижает жесткость смеси в 5 раз! Также существуют специальные химические добавки, замедляющие рост коагуляционных структур в области контактов цементного теста с зернами заполнителей. С физической точки зрения действие таких добавок сводится к повышению электрического потенциала коллоидных частиц. Наибольший же эффект для улучшения удобоукладываемости дают специальные органические добавки – пластификаторы. С физической точки зрения эти добавки создают вокруг частиц тонкие пленки (гидрофобные/гидрофильные), которые позволяют значительно снизить содержание воды, при сохранении удобоукладываемости. При этом снижение воды приводит к увеличению прочности бетона.

betonvtomske.ru

Технологические свойства бетонных смесей: удобоукладываемость и однородность - Статьи

К основным технологическим свойствам бетонных смесей можно отнести их удобоукладываемость и способность сохранять однородность и не расслаиваться. Под удобоукладываемостью бетонных смесей понимают их способность заполнять форму или опалубку и уплотняться под воздействием механических усилий. Первоначально под удобоукладываемостью понимали степень жесткости бетонных смесей, оцениваемой по времени или работе, необходимой для полного уплотнения бетонной смеси при вибрировании. В современной технологии бетона термином «удобоукладываемость» объединяют обычно показатели подвижности и жесткости бетонной смеси. Показатели удобоукладываемости тесно связаны с реологическими свойствами бетонной смеси - вязкостью и предельным напряжением сдвига. Они являются условными и при достаточной простоте измерения позволяют оценить изменение пластичности смесей при изменении различных технологических факторов, их соответствие условиям формования и уплотнения. Мерой удобоукладываемости подвижных смесей является показатель осадки нормального конуса (конуса Абрамса) в см из свежесформованной бетонной смеси. Для жестких бетонных смесей мерой удобоукладываемости является показатель жесткости в с, определяемый временем, необходимым для растекания и превращения под действием вибрирования в равновеликий цилиндр конуса из бетонной смеси (способ Вебе). На принципе изменения формы бетонной смеси в процессе ее вибрирования основан ряд других способов оценки удобоукладываемости. По способу Б. Г. Скрамтаева жесткость оценивают временем вибрирования, необходимым для расплывания конуса бетонной смеси, отформованной штыкованием в форме размером 20x20x20 см. Втехническом вискозиметре Пауэрса-Десовабетонный конус под влиянием вибрации переходит в состояние вязкого течения и превращается в равновеликий цилиндр по принципу сообщающихся сосудов. Соотношение показателей жесткости, определенной способами Вебе, вискозиметром Пауэрса-Десова и упрощенным способом Скрамтаева составляет 1 : (2-3) : (3-4). По мере увеличения показателя жесткости это соотношение возрастает. В зависимости от показателей подвижности по осадке конуса и жесткости по Вебе установлены марки бетонной смеси по удобоукладываемости . Наряду с указанными, предложен ряд других способов оценки Удобоукладываемости бетонных смесей, основанных на измерении расплыва конуса, времени истечения, пенетрации шарика, погружения цилиндрического тела с полукруглой головкой, падающего с определенной высоты и др. Для оценки Удобоукладываемости жестких смесей предложено измерять энергию, необходимую для их уплотнения, например, по мощности, потребляемой виброплощадкой. Можно также использовать метод измерения электропроводности уплотняемой бетонной смеси, замера динамики уплотнения по изменению уровня уплотняемой смеси в сосуде, определения коэффициента уплотняемости как отношения объемной массы смеси, уплотненной определенным способом, к ее теоретическому значению и др. На показатели удобоукладываемости оказывают влияние продолжительность и температура выдерживания смеси до укладки. Изменение удобоукладываемости бетонной смеси при ее выдерживании обусловлено гидратацией цемента и изменением коагуляционной структуры, поглощением воды заполнителями и ее испарением. Изменение удобоукладываемости во времени зависит от минералогического состава и тонкости помола цемента, вида и содержания добавок, плотности и влажности заполнителей, водосодержания смеси. Снижение подвижности бетонных смесей существенно зависит от значения В/Ц. Это можно объяснить влиянием В/Ц на скорость гидратации и процессы структурообразования цементного камня. Результаты наших опытов показали, что комплексные добавки полифункциональных модификаторов (ПФМ), содержащие суперпластификатор и замедлители схватывания, во всех случаях существенно изменяют кинетику потери подвижности литыми бетонными смесями. Наиболее сильное стабилизирующее действие оказывают сахаросодержащие ПАВ, наименьшее - ПАВ лигносульфонатного типа. Если при нормальной температуре в течение 30 мин с момента затворения литая смесь без добавок теряет подвижность на 4-6 см, с добавкой суперпластификатора С-3 - на 6-10 см, то добавки ПФМ позволяют за это время обеспечить практически неизменную подвижность смеси. С помощью сахаросодержащих ПФМ удается продлить жизнеспособность литых смесей до 1-1,5 ч, в то время как смеси с одним суперпластификатором С-3 снижают свою подвижность в два раза и более. При сопоставимых условиях темп потери подвижности увеличивается с уменьшением В/Ц цементного теста в бетонной смеси. Кривые падения подвижности литых бетонных смесей с добавками ПФМ можно разбить на этапы относительной стабильности и прогрессирующего снижения подвижности. Как весь период снижения подвижности, так и период относительной стабильности тесно скоррелированы с началом схватывания цемента и периодом формирования структуры на кривых пластической прочности при прочих равных условиях. Нормальная густота цементного теста существенно влияет на его реологические свойства. Как правило, увеличение нормальной густоты цемента на 1 % повышает водопотребность бетонной смеси на 1,5-3%. Однако в ряде случаев даже при одинаковой нормальной густоте водопотребность бетонных смесей на различных портландцементах может отличаться на 5-10%, что можно объяснить дополнительным влиянием минералогического состава и тонкости помола. Влияние заполнителей на удобоукладываемость и водопотребность бетонных смесей связано с их удельной поверхностью и пустотностью. Оба эти показателя влияют на толщину прослойки цементного теста на зернах заполнителей - одного из главных физических параметров, влияющих на подвижность бетонной смеси. Удельная поверхность и пустотность заполнителей определяются их крупностью, формой, зерновым составом, содержанием отмучиваемых частиц. Удельную поверхность заполнителей можно рассчитать в зависимости от их зернового состава по справочным таблицам и эмпирическим формулам. Значение удельной поверхности смеси заполнителей не зависит от расположения зерен в пространстве. Химически, преимущественно в результате ионного взаимодействия, вода связывается в стехиометрических соотношениях с минералами цемента в процессе гидратации. В начальный период твердения (до1ч) доля прореагировавшего Цемента не превышает 1 % и соответственно количество химически связанной воды незначительно. Физико-химическая связь воды в бетонной смеси характерна в основном в адсорбционных пленках, образуемых на поверхности твердых частиц ненасыщенными ван-дер-ваальсовыми силами. Толщина адсорбционных водных пленок, обладающих свойствами псевдоупругого твердого тела, уменьшается с увеличением дисперсности твердых частиц. Так, для песка со средней крупностью зерен 1,65 мм она составляет 0,285 мкм, 0,3 мм - 0,114 мкм. На зернах цемента и гидратных новообразований толщина адсорбционного слоя воды составляет от нескольких единиц до нескольких тысяч молекулярных диаметров. Нетрудно подсчитать, зная удельную поверхность заполнителей, что количество адсорбционно связываемой воды в бетонной смеси составляет 2-4 л, т.е. 1-3% всей воды затворения при использовании абсолютно сухих материалов. Адсорбционные слои на твердых поверхностях возникают как при поглощении паров из воздуха (гигроскопическая влага), так и при непосредственном соприкосновении с водой. Диполи воды, непосредственно прилегающие к твердым поверхностям и удерживаемые под большим давлением поля молекулярных сил, образуют прочносвязанную воду, несколько удаленные и связанные диполь-дипольными взаимодействиями создают рыхлосвязанную воду. На твердых поверхностях компонентов бетонных смесей адсорбируются как водные молекулы, так и ионы, растворенные в воде, образуемые при растворении и гидролизе цемента. При этом на поверхностях раздела фаз возникает двойной электрический слой, толщина которого обратно пропорциональна концентрации ионного раствора и меньше 0,01 мкм. Вслед за образованием адсорбционных пленок по мере увлажнения происходит смачивание частиц цемента и заполнителей водой. Смачивание водой является свойством гидрофильных твердых поверхностей и обусловлено поверхностным натяжением. Поверхностное натяжение твердых тел определяют косвенными экспериментальными методами или вычисляют теоретически на основании современной электростатической теории кристаллической решетки, развитой М. Борном и Я.И. Френкелем. Величина поверхностного натяжения различных твердых тел различна, но всегда значительно больше чем жидкостей. Например, расчетные значения поверхностной энергии для МдО и СаСО3 равны соответственно 1300 107 и 380 10 7 Дж/см2, а экспериментально определенные 1200 Ю-7 и 230 10"7 Дж/см2. По сравнению с адсорбционной, вода смачивания удерживается значительно слабее и включает диффузный слой, состоящий из молекул, способных передвигаться от одной частицы к другой до установления равновесия. Для диффузной воды характерна меньшая скорость передвижения по сравнению со скоростью поднятия воды в капиллярах. Оптимальное относительное водосодержание цемента, условно соответствующее его полному смачиванию при обычных условиях (без введения пластификаторов, прессующих воздействий и др.), соответствует примерно К = 0,876Кн г, где Кн г - водоцементное отношение цементного теста нормальной густоты. При оптимальной влажности Кмв цементное тесто характеризуется постоянными реологическими параметрами - предельным напряжением сдвига (10= 1040 Па) и коэффициентом вязкости (Кв = 20 ПаЧс), а также имеет сингулярную точку на кривой электросопротивления. Одна из важных технологических задач - минимизация водопотребности бетонных смесей без ухудшения показателей их удобоукладываемости решается за счет введения пластифицирующих добавок и оптимизации зернового состава заполнителей, применения цементов с пониженной нормальной густотой. Предложено значительное число пластифицирующих добавок, рассмотренных в разделе 1. При неизменном водосодержании и начальной осадке конуса от 1 до 4 см подвижность бетонных смесей при введении слабопластифицирующих добавок достигает 5-9 см, эффективных пластификаторов 10-15 см и суперпластификаторов до 20 см и более. При постоянной подвижности уменьшение водопотребности составляет соответственно 5-10,10-20, 20-30% и более. Добавки пластификаторов существенно изменяют реологические характеристики бетонных смесей даже при практически неразрушенной структуре, уменьшают предельное напряжение сдвига, эффективную вязкость и модуль упругости сдвига. Коэффициент тиксотропии, характеризующий спад значений пластической вязкости на единицу изменения скорости сдвига, в опытах В.А. Бабаева для бетонных смесей без добавок составлял около 106 Пас2/м, при введении суперпластификатора С-3 он изменился до 16 105 Па с2/м. С увеличением объема цементного теста эффективность добавок возрастает. Увеличение дозировки суперпластификаторов в некотором интервале (для С-3, например, от 0,2 до 1 % массы цемента) приводит к почти линейному изменению водопотребности. При дозировках больше оптимальных скорость снижения водопотребности уменьшается. При использовании ряда пластификаторов предпочтительно использование низкоалюминатных цементов. Увеличение в цементе содержания алюминатной фазы вызывает необходимость повышения дозы добавок. Примерно одновременно (в начале 30-х годов прошлого столетия) и независимо друг от друга В.И. Сорокером в СССР и Ф.Р. Макмилланом в США было установлено правило постоянства водопотребности(ППВ).Ими было найдено, что при неизменном водосодержании расход цемента в пределах 200-400 кг/м3 не влияет существенно на удобоукладываемость бетонных смесей. Первоначально ППВ распространяли лишь на малоподвижные смеси, а затем оно нашло экспериментальное подтверждение для жестких и подвижных бетонных смесей. Основываясь на ППВ, сначала С.А. Миронов, а затем и другие авторы предложили графики и таблицы для ориентировочного определения водосодержания бетонных смесей в зависимости от показателей осадки конуса и жесткости. Эмпирические рекомендации по определению водосодержания бетонных смесей с учетом ППВ в настоящее время являются обычными в методиках проектирования составов тяжелых бетонов, рекомендуемых в большинстве стран. В соответствии с ППВ водопотребность бетонных смесей необходимая для достижения определенного показателя удобоукладываемости, является практически постоянной в определенном диапазоне расходов цемента и В/Ц. Признавая ППВ, различные авторы, вместе с тем, приводят различные значения предельных расходов цемента, в диапазоне которых это правило справедливо. Так, большинство авторов верхний предел применимости ППВ принимает 400 кг/м3, В.П.Сизов считает, что оно справедливо до 350 кг/м3, а А.Е. Десов - до 300 кг/м3. По мере увеличения жесткости понижаются как нижний, так и верхний предельные расходы цемента. Даже в пределах одной жесткости верхний предельный расход цемента колеблется от 280 до 380 кг/м3, а нижний - от 140 до 200 кг/м3.

Авторы: Л. И. Дворкин, О. Л. Дворкин

  • В нашей системе за кубометр бетона цена для Балашихи определяется в процессе тендера между качественными растворными узлами Балашихинского района и окрестных населенных пунктов.
  • Представленные здесь данные поспособствуют уменьшению затраты на бетон в Троицке.
  • Подробные данные о бетоне м450 оптом (цена, распространенность, круг употребления и точки отгрузки).

m350.ru

Свойства и состав бетона

Реологические свойства бетонной смеси
Бетонной смесью называют рационально составленную и тщательно перемешанную смесь компонентов бетона до начала процессов схватывания и твердения. Состав бетонной смеси определяют, исходя из требований к самой смеси и к бетону.Основной структурообразующей составляющей в бетонной смеси является цементное тесто.Независимо от вида бетона бетонная смесь должна удовлетворять двум главным требованиям: обладать хорошей удобоукладываемостью, соответствующей применяемому способу уплотнения и сохранять при транспортировании и укладке однородность, достигнутую при приготовлении.При действии возрастающего усилия бетонная смесь вначале претерпевает упругие деформации, когда же преодолена структурная прочность, она течет подобно вязкой жидкости. Поэтому бетонную смесь называют упруго-пластично-вязким телом, обладающим свойствами твердого тела и истинной жидкости.Свойство бетонной смеси разжижаться при механических воздействиях и вновь загустевать в спокойном состоянии называется тиксотропией
Технические свойства бетонной смеси
При изготовлении железобетонных изделий и бетонировании монолитных конструкций самым важным свойством бетонной смеси является удобоукладываемость (или удобоформуемость), т.е. способность заполнять форму при данном способе уплотнения, сохраняя свою однородность.
    Для оценки удобоукладываемости используют три показателя:
  • подвижность бетонной смеси (П), являющуюся характеристикой структурной прочности смеси;
  • жесткость (Ж), являющуюся показателем динамической вязкости бетонной смеси;
  • связность, характеризуемую водоотделением бетонной смеси после ее отстаивания.
Подвижность бетонной смеси характеризуется измеряемой осадкой (см) конуса (ОК), отформованного из бетонной смеси, подлежащей испытанию. Подвижность бетонной смеси вычисляют как среднее двух определений, выполненных из одной пробы смеси. Если осадка конуса равна нулю, то удобоукладываемость бетонной смеси характеризуется жесткостью. Жесткость бетонной смеси характеризуется временем (с) вибрирования, необходимым для выравнивания и уплотнения предварительно отформованного конуса бетонной смеси в приборе для определения жесткости.Связность бетонной смеси обуславливает однородность строения и свойств бетона. Очень важно сохранить однородность бетонной смеси при перевозке, укладке в форму и уплотнении. При уплотнении подвижных бетонных смесей происходит сближение составляющих ее зерен, при этом часть воды отжимается вверх. Уменьшение количества воды затворения при применении пластифицирующих добавок и повышение водоудерживающей способности бетонной смеси путем правильного подбора зернового состава заполнителей являются главными мерами борьбы с расслоением подвижных бетонных смесей.
Удобоукладываемость бетонной смеси
Количество воды затворения является основным фактором, определяющим удобоукладываемость бетонной смеси. Вода затворения (В, кг/м3) распределяется между цементным тестом (Вц) и заполнителем (Взап): В= Вц + Взап. Количество воды в цементном тесте определяют его реологические свойства: предельное напряжение сдвига и вязкость, а следовательно, и технические свойства бетонной смеси - подвижность и жесткость. Водопотребность заполнителя Взап является его важной технологической характеристикой; она возрастает с увеличением суммарной поверхности зерен заполнителя и поэтому велика у мелких песков. Для обеспечения требуемой прочности бетона величина водоцементного отношения должна сохраняться постоянной, поэтому возрастание водопотребности вызывает перерасход цемента. При мелких песках он достигает 15-25%, поэтому мелкие пески следует применять после обогащения крупным природным или дробленым песком и с пластифицирующими добавками, снижающими водопотребность.
Деформативные свойства бетона
Под нагрузкой бетон ведет себя иначе, чем сталь и другие упругиe материалы. Конгломератная структура бетона определяет его поведение при возрастающей нагрузке осевого сжатия. Область условно упругой работы бетона - от начала нагружения до напряжения сжатия, при котором по поверхности сцепления цементного камня с заполнителем образуются микротрещины. Опыты подтвердили, что при небольших напряжениях и кратковременном нагружения для бетона характерна упругая деформация, подобная деформации пружины. Модуль упругости бетона возрастает при увеличении прочности и зависит от пористости: увеличение пористости бетона сопровождается снижением модуля упругости. При одинаковой марке по прочности модуль упругости легкого бетона на пористом заполнителе меньше в 1,7-2,5 раза тяжелого. Еще ниже модуль упругости ячеистого бетона. Таким образом, упругими свойствами бетона можно управлять, регулируя его структуру. Модуль упругости бетона при сжатии и растяжении принимают равными между собой:Есж = Ер = Еб. Ползучестью называют явление увеличения деформаций бетона во времени при действии постоянной статической нагрузки. Ползучесть зависит от вида цемента и заполнителей, состава бетона, его возраста, условий твердения и влажности. Меньшая ползучесть наблюдается при применении высокомарочных цементов и плотного заполнителя - щебня из изверженных горных пород. Пористый заполнитель усиливает ползучесть, поэтому легкие бетоны имеют большую ползучесть по сравнению с тяжелыми. Преждевременное высыхание бетона ухудшает структуру и увеличивает его ползучесть. Однако насыщение водой затвердевшего бетона может вызвать рост ползучести. Ползучесть и связанная с ней релаксация напряжений может играть отрицательную роль. Например, ползучесть бетона приводит к потере натяжения; в предварительно напряженных железобетонных конструкциях.
Усадка и набухание бетона
При твердении на воздухе происходит усадка бетона, т.е. бетон сжимается и линейные размеры бетонных элементов сокращаются. Усадка слагается из влажностной, карбонизационной и контракционной составляющих. Вследствие усадки бетона в железобетонных и бетонных конструкциях возникают усадочные напряжения, поэтому сооружения большой протяженности разрезают усадочными швами во избежание появления трещин. Ведь при усадке бетона 0,3 мм/м в сооружении длиной 30 м общая усадка составляет около 10 мм. Массивный бетон высыхает снаружи, а внутри он еще долго остается влажным. Неравномерная усадка вызывает растягивающие напряжения в наружных слоях конструкции и появление внутренних трещин на контакте с заполнителем и в самом цементном камне. Для снижения усадочных напряжений и сохранения монолитности конструкций стремятся уменьшить усадку бетона. Наибольшую усадку имеет цементный камень. Введение заполнителя уменьшает количество вяжущего в единице объема материала, при этом образуется своеобразный каркас из зерен заполнителя, препятствующий усадке. Поэтому усадка цементного раствора и бетона меньше, чем цементного камня. Бетон наружных частей гидротехнических сооружений, цементно-бетонных дорог периодически увлажняется и высыхает. Колебания влажности бетона вызывают попеременные деформации усадки и набухания, которые могут вызвать появление микротрещин и разрушение бетона.
Морозостойкость бетона
Морозостойкость бетона определяют путём попеременного замораживания в холодильной камере при температуре от 15 до 20°С и оттаивания в воде при температуре 15-20°С бетонных образцов кубов с размерами ребра 10, 15 или 20 см (в зависимости от наибольшей крупности заполнителя). Образцы испытывают после 28 суток выдержки в камере нормального твердения или через 7 суток после тепловой обработки. Контрольные образцы, предназначенные для испытания на сжатие в эквивалентном возрасте, хранят в камере нормального твердения. Морозостойкость бетона зависит от качества примененных материалов и капиллярной, пористости бетона. Объем капиллярных пор оказывает решающее влияние на водопроницаемость и морозостойкость бетона. Морозостойкость бетона значительно возрастает, когда капиллярная пористость менее 7%.
Водонепроницаемость бетона
С уменьшением объема капиллярных макропор снижается водонепроницаемость и одновременно повышается морозостойкость бетона. Для уменьшения водонепроницаемости в бетон при его изготовлении вводят уплотняющие (алюминат натрия) и гидрофобизующие добавки. Нефтепродукты (бензин, керосин и др.) имеют меньшее, чем у воды, поверхностное натяжение, поэтому они легче проникают через обычный бетон. Для снижения фильтрации нефтепродуктов в бетонную смесь можно вводить специальные добавки (хлорное железо и др.). Проницаемость бетона по отношению к воде и нефтепродуктам резко уменьшается, если вместо обычного портландцемента применяют расширяющийся.
Теплофизические свойства бетона
Теплопроводность - наиболее важная теплофизическая характеристика бетона, в особенности применяемого в ограждающих конструкциях зданий. Теплопроводность тяжелого бетона в воздушно-сухом состоянии 1,2 Вт/(м.°С), т.е. она в 2-4 раза больше, чем у легких бетонов (на пористых заполнителях и ячеистых). Высокая теплопроводность является недостатком тяжелого бетона. Панели наружных стен из тяжелого бетона изготавливают с внутренним слоем утеплителя. Теплоемкость тяжелого бетона изменяется в узких пределах -0,75-0,92 Вт/(м. С°). Линейный коэффициент температурного расширения бетона составляет около 0,00001 °С, следовательно, при увеличении температуры на 50 °С расширение достигает примерно 0,5 мм/м. Во избежание растрескивания сооружений большой, протяженности разрезают температурно-усадочными швами. Крупный заполнитель и раствор, составляющие бетон, имеют различный коэффициент температурного расширения и будут по разному деформироваться при изменении температуры. Большие колебания температуры (более 80°С) смогут вызвать внутреннее растрескивание бетона вследствие различного теплового расширения крупного заполнителя и раствора. Характерные трещины распространяются по поверхности заполнителя, некоторые из них образуются в растворе, а иногда и в слабых зернах заполнителя. Внутреннее растрескивание можно предотвратить, если позаботиться о подборе составляющих бетона с близкими коэффициентами температурного расширения

www.betnasos.ru

Трещиностойкость (вязкость разрушения) бетона - это... Что такое Трещиностойкость (вязкость разрушения) бетона?

Трещиностойкость (вязкость разрушения) бетона – способность бетона сопротивляться началу движения и развитию трещин при механических и других воздействиях.

[ГОСТ  29167-91]

Рубрика термина: Свойства бетона

Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника, Автотранспорт, Акустические материалы, Акустические свойства, Арки, Арматура, Арматурное оборудование, Архитектура, Асбест, Аспирация, Асфальт, Балки, Без рубрики, Бетон, Бетонные и железобетонные, Блоки, Блоки оконные и дверные, Бревно, Брус, Ванты, Вентиляция, Весовое оборудование, Виброзащита, Вибротехника, Виды арматуры, Виды бетона, Виды вибрации, Виды испарений, Виды испытаний, Виды камней, Виды кирпича, Виды кладки, Виды контроля, Виды коррозии, Виды нагрузок на материалы, Виды полов, Виды стекла, Виды цемента, Водонапорное оборудование, Водоснабжение, вода, Вяжущие вещества, Герметики, Гидроизоляционное оборудование, Гидроизоляционные материалы, Гипс, Горное оборудование, Горные породы, Горючесть материалов, Гравий, Грузоподъемные механизмы, Грунтовки, ДВП, Деревообрабатывающее оборудование, Деревообработка, ДЕФЕКТЫ, Дефекты керамики, Дефекты краски, Дефекты стекла, Дефекты структуры бетона, Дефекты, деревообработка, Деформации материалов, Добавки, Добавки в бетон, Добавки к цементу, Дозаторы, Древесина, ДСП, ЖД транспорт, Заводы, Заводы, производства, цеха, Замазки, Заполнители для бетона, Защита бетона, Защита древесины, Защита от коррозии, Звукопоглащающий материал, Золы, Известь, Изделия деревянные, Изделия из стекла, Инструменты, Инструменты геодезия, Испытания бетона, Испытательное оборудование, Качество цемента, Качество, контроль, Керамика, Керамика и огнеупоры, Клеи, Клинкер, Колодцы, Колонны, Компрессорное оборудование, Конвеера, Конструкции ЖБИ, Конструкции металлические, Конструкции прочие, Коррозия материалов, Крановое оборудование, Краски, Лаки, Легкие бетоны, Легкие наполнители для бетона, Лестницы, Лотки, Мастики, Мельницы, Минералы, Монтажное оборудование, Мосты, Напыления, Обжиговое оборудование, Обои, Оборудование, Оборудование для производства бетона, Оборудование для производства вяжущие, Оборудование для производства керамики, Оборудование для производства стекла, Оборудование для производства цемента, Общие, Общие термины, Общие термины, бетон, Общие термины, деревообработка, Общие термины, оборудование, Общие, заводы, Общие, заполнители, Общие, качество, Общие, коррозия, Общие, краски, Общие, стекло, Огнезащита материалов, Огнеупоры, Опалубка, Освещение, Отделочные материалы, Отклонения при испытаниях, Отходы, Отходы производства, Панели, Паркет, Перемычки, Песок, Пигменты, Пиломатериал, Питатели, Пластификаторы для бетона, Пластифицирующие добавки, Плиты, Покрытия, Полимерное оборудование, Полимеры, Половое покрытие, Полы, Прессовое оборудование, Приборы, Приспособления, Прогоны, Проектирование, Производства, Противоморозные добавки, Противопожарное оборудование, Прочие, Прочие, бетон, Прочие, замазки, Прочие, краски, Прочие, оборудование, Разновидности древесины, Разрушения материалов, Раствор, Ригеля, Сваи, Сваизабивное оборудование, Сварка, Сварочное оборудование, Свойства, Свойства бетона, Свойства вяжущих веществ, Свойства горной породы, Свойства камней, Свойства материалов, Свойства цемента, Сейсмика, Склады, Скобяные изделия, Смеси сухие, Смолы, Стекло, Строительная химия, Строительные материалы, Суперпластификаторы, Сушильное оборудование, Сушка, Сушка, деревообработка, Сырье, Теория и расчет конструкций, Тепловое оборудование, Тепловые свойства материалов, Теплоизоляционные материалы, Теплоизоляционные свойства материалов, Термовлажносная обработка бетона, Техника безопасности, Технологии, Технологии бетонирования, Технологии керамики, Трубы, Фанера, Фермы, Фибра, Фундаменты, Фурнитура, Цемент, Цеха, Шлаки, Шлифовальное оборудование, Шпаклевки, Шпон, Штукатурное оборудование, Шум, Щебень, Экономика, Эмали, Эмульсии, Энергетическое оборудование

Источник: Энциклопедия терминов, определений и пояснений строительных материалов

Энциклопедия терминов, определений и пояснений строительных материалов. - Калининград. Под редакцией Ложкина В.П.. 2015-2016.

construction_materials.academic.ru


Смотрите также