/ БХ. Лекция № 1 Биохимия твердых тканей зуба. Биохимия цемента зуба


Биохимия полости рта

55

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ЧИТИНСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

Учебное пособие

Чита – 2004 г.

Рекомендовано Учебно-методическим объединением по медицинскому и фармацевтическому образованию вузов России в качестве учебного пособия для студентов, обучающихся по специальности 040400 – стоматология (УМО-216 от 13.04.04)

Пособие составлено сотрудниками кафедры биологической химии с курсами биоорганической химии и клинической биохимии ГОУ ВПО Читинской государственной медицинской академии заведующим кафедрой, профессором, д.м.н. Б.С.Хышиктуевым и профессором, д.м.н. Н.А.Хышиктуевой.

Рецензенты: заведующий кафедрой биохимии Московского медицинского стоматологического университета, профессор, д.м.н. Т.П.Вавилова, заведующий кафедрой биохимии Российской медицинской академии последипломного образования, профессор, д.м.н. Г.А.Яровая.

ОГЛАВЛЕНИЕ

Введение

I. Биохимия твердых (минерализованных) тканей зуба

  1. Эмаль

  2. Дентин

  3. Цемент

  4. Пульпа

  5. Пародонт

II. Биохимия жидкостей полости рта, зубной камень и зубной налет

  1. Слюна

  2. Десневая жидкость

  3. Общая характеристика и особенности химического состава зубного налета

  4. Зубной камень

III. Метаболические функции фтора, кальция и фосфора в ротовой полости

IV. Патология: биохимический аспект

  1. Кариес

  2. Флюороз

  3. Пародонтит

Список литературы

ВВЕДЕНИЕ

Гомеостаз полости рта во многом определяется структурно-функциональным состоянием тканей и микроорганизмов ротовой полости. Фундаментальные и прикладные исследования последнего десятилетия в области стоматологии расширили представления о биохимических аспектах твердых тканей зуба, слюны, десневой жидкости, метаболических особенностях жизнедеятельности микроорганизмов и ксенобиотиков в норме и патологии.

В настоящем учебном пособии освещены вопросы биохимии полости рта в физиологических условиях и кратко изложены сведения о биохимических нарушениях, при наиболее часто встречающихся патологических состояниях полости рта. Данное руководство составлено в соответствии с рекомендуемой программой ВУНМЦ МЗ РФ по биологической химии для студентов стоматологического факультета по разделу «Биохимия тканей зуба», «Биохимия ротовой жидкости» и «Метаболические функции фтора». Авторы надеются, что настоящее пособие будет интересно и полезно не только студентам, но и практическим врачам-стоматологам и с благодарностью примут все пожелания и замечания.

I. Биохимия тканей зуба

В составе зуба выделяют минерализованные и неминерализованные ткани. К первым относятся эмаль, дентин и цемент. Вообще в организме человека в норме имеется четыре вида минерализованных тканей: эмаль, дентин, цемент и кость, которые отличаются по химическому составу и происхождению. Последние три происходят из стволовых клеток мезодермы, тогда как эмаль является производным эктодермы. В их химическом составе преобладают неорганические компоненты, а также присутствуют органические соединения и вода (табл.1).

Мягкая (неминерализованная) ткань в составе зуба одна, она называется пульпой и находится в полости коронки и корня зуба.

Таблица 1

Химический состав эмали, дентина и кости (в % от массы)

1.1. ЭМАЛЬ

Эмаль, покрывающая коронку зуба, - самая твердая ткань в организме (сравнимая с алмазом), что объясняется высокой концентрацией в ней неорганических веществ (до 97%), главным образом, кристаллов апатитов: гидроксиапатита (до 75%), карбонатапатита, фторапатита, хлорапатита и др. Здоровая эмаль содержит 0,8-1,0% свободной воды и 1,2% органических соединений, представленных белками, липидами и углеводами. Углеводы эмали в основном представлены глюкозой, маннозой и галактозой. Вода занимает свободное пространство в кристаллической решетке апатитов и органической основе, а также располагается между кристаллами.

Неорганический компонент эмали. Мельчайшими структурными единицами эмали являются кристаллы апатитоподобного вещества, формирующие эмалевые призмы. Минеральную основу составляют кристаллы апатитов и восьмикальциевый фосфат - Са8Н2(РО4)6*5Н2О; формула основного гидроксиапатита - Са10(РО4)6(ОН)2, в этом случае молярное соотношение Са/Р равно около 1,67. Однако, как это установлено в настоящее время, соотношение этих компонентов может изменяться как в сторону уменьшения(1,33), так и в сторону увеличения (2,0). При соотношении Са/Р 1,67 разрушение кристаллов происходит при выходе 2 ионов Са2+, при соотношении 2,0 гидроксиапатит способен противостоять разрушению до замещения 4 ионов Са, тогда как при соотношении 1,33 его структура разрушается. По современным представлениям данный параметр можно использовать для оценки состояния эмали зуба. Гидроксиапатит имеет гексагональную форму (рис. 1). Длинная ось кристаллов-призм расположена по основному направлению давления на кость или зуб. Каждый кристалл покрыт гидратной оболочкой около 1 нм. Связанная вода, образующая эту оболочку, составляет примерно 3,0-3,3% массы эмали. Кроме связанной воды (гидратная оболочка) в эмали имеется свободная вода, располагающаяся в микропространствах. Общий объем воды в эмали составляет 3,8%. Первое упоминание о жидкости, находящейся в твердых тканях зуба, относится к 1928 году. В дальнейшем стали дифференцировать зубную жидкость, которая находится в дентине от эмалевой жидкости, заполняющей микропространства, объем которых составляет 0,1-0,2% от объема эмали. В исследованиях на удаленных зубах человека с использованием специальной методики подогрева показано, что через 2-3 часа после начала опыта на поверхности эмали образуются капельки «эмалевой жидкости». Движение жидкости обусловлено капиллярным механизмом, а по жидкости диффундируют молекулы и ионы. Эмалевая жидкость играет важную биологическую роль не только в период развития эмали, но и в сформированном зубе, обеспечивая ионный обмен.

Рис. 1. Строение молекулы гидроксиапатита

Состояние эмали зуба во многом определяется соотношением Са/Р как элементов, составляющих основу эмали зуба. Это соотношение непостоянно и может изменяться под воздействием ряда факторов. Здоровая эмаль молодых людей имеет более низкий коэффициент Са/Р, чем эмаль зубов взрослых; этот показатель уменьшается также при деминерализации эмали. Более того, возможны существенные различия соотношения Са/Р в пределах одного зуба, что послужило основанием для утверждения о неоднородности структуры эмали зуба, и, следовательно, о неодинаковой подверженности различных участков эмали поражению кариесом. В кристаллической решетке гидроксиапатита имеются вакантные места, поэтому даже в уже сформированном кристалле при химических и физических воздействиях возможныизоморфные замещения. При этом любое проникновение веществ на поверхность или внутрь кристалла связано с преодолением гидратной оболочки. Результатом подобных явлений и образования вакансий является варьирование свойств кристаллов, что выражается в изменении проницаемости эмали, ее резистентности к растворению, адсорбционных свойств. Однако, только некоторые ионы могут включаться в структуру апатитов. Если общую формулу апатита представить как А10В6Х2, то по положению А могут включаться ионы Са2+, Mg2+,Ва2+ , Cr2+, Sr2+ и другие, по положению В - РО43- и другие, по положению Х - НО- , F-, Cl- и другие.

Примером реакции изоморфного замещения является следующая:

Са10(РО4)6(ОН)2 + Mg2+  Са9 Mg(РО4)6(ОН)2 + Са2+

Известно, что приведенное выше взаимодействие является неблагоприятным, так как снижает резистентность эмали к действию кариесогенных факторов.

Замещение в гидроксиапатитах ионов Са на Sr сопровождается формированием стронциевых апатитов - Ca9Sr(РО4)6(ОН)2. При этом стронций, поступая в избыточном количестве, хотя и вытесняет из кристаллической решетки кальций, но сам в ней не удерживается, что приводит к порозности костей. Этот эффект усугубляется недостатком кальция. В результате проводимых как в нашей стране, так и за рубежом, исследований установлено, что микроэлементы в эмали располагаются неравномерно. В наружном слое отмечается большое содержание фтора, свинца, цинка, железа при меньшем содержании в этом слое натрия, магния, карбонатов. Равномерно по слоям распределяются, как правило, стронций, медь, алюминий, калий.

Такие изменения характерны для болезни Кашина-Бека (“уровская болезнь”), которая поражает людей, преимущественно в раннем детстве, живущих в долине реки Уров Читинской и Амурской областей. Страдание начинается с болей в суставах, затем возникает поражение костной ткани, размягчение эпифизов, нарушаются процессы окостенения. В эндемичных районах в почве и воде содержится в 2 раза меньше кальция и в 1,5-2 раза больше стронция, чем в норме. В настоящее время существует и другая теория патогенеза “уровской болезни”, согласно которой патология развивается в результате дисбаланса фосфатов в окружающей среде.

Изоморфное замещение в гидроксиапатите на фтор приводит к образованию гидроксифторапатитов и фторапатитов - Са10(РО4)6F(ОН) и Са10(РО4)6F2:

Са10(РО4)6(ОН)2 + F-  Са10(РО4)6F(ОН) + (ОН)-

Фторапатиты, которых в норме в эмали около 0,66%, обладают значительно большей резистентностью к растворению в кислой среде, чем гидроксиапатиты. Было установлено, что при замещении фтором даже одной из 50 гидроксильных групп растворимость эмали резко понижалась. Именно с этим связано профилактическое действие небольших концентраций фтора. Однако при высоком его содержании образуется фторид кальция - СаF2 - практически нерастворимое соединение, которое быстро исчезает с поверхности зубов в результате выщелачивания:

Са10(РО4)6(ОН)2 + 2F-  10СаF2 + 6(РО4)3- +2(ОН)-

В связи с этим не следует применять высокие концентрации фторидов, особенно в кислых растворах.

В эмали зуба также содержатся хлорапатит - Са10(РО4)6Cl2 (4,4%) и карбонатапатиты - Са10(РО4)5СО3(ОН)2. Они составляют 19% и их количество увеличивается при употреблении пищи, богатой углеводами. Рост концентрации карбонатапатитов грозит снижением резистентности эмали и способствует развитию кариозного процесса.

Большая часть кристаллов гидроксиапатита в эмали ориентирована и упорядочена в виде сложных образований - эмалевых призм. Элементарная ячейка гидроксиапатита (структура 1 порядка) имеет молекулярную массу около 1000, в составе кристалла гидроксиапатита (структура 2 порядка) находится около 2500 таких ячеек (М=2 500 000). Эмалевая призма (структура 3 порядка) в свою очередь составлена из тысяч и миллионов кристаллов. Эмалевые призмы начинаются у эмалево-дентинной границы и идут к поверхности эмали, многократно изгибаясь в виде спирали, которые собраны в пучки (структура 4 порядка).

Органические соединения эмали. В процентах сухой массы они составляют: белки – 0,25-0,45%, липиды – 0,6%, цитраты – 0,1%. Наибольшее количество протеинов содержится в области эмалево-дентинного соединения. Белки эмали нельзя причислить к группе коллагеновых, так как в протеинах эмали нет гидроксипролина, а количество пролина составляет 166-187 аминокислотных остатков на 1000.

В эмали имеются белки, участвующие в амелогенезе - амелогенины и не являющиеся амелогенинами (энамелины). Амелогенин (первая группа белков эмали) представлен 5 соединениями с молекулярной массой 25; 15; 9,5; 7,5 и 6 кДа. Энамелины (вторая группа белков эмали) также являются гетерогенной фракцией и состоят из 5 классов с молекулярной массой, равной 72, 56, 42, 30, 21 кДа. Белки этого семейства способны агрегироваться и дезагрегироваться. Оба класса протеинов относятся к сложным – гликофосфопротеидам, причем амелогенины содержат до 75% органического фосфата, а энамелины – 25%.

Основой формирования и функционального построения эмали служит ее белковая матрица, элементарной функциональной единицей которой является кальций-связывающий белок эмали (КСБЭ). Последний способен к олиго- и полимеризации посредством кальциевых мостиков с образованием трехмерной белковой сетки, нерастворимой в нейтральной среде. Эта структура в дальнейшем выступает в роли центров кристаллизации, обеспечивая упорядоченность и регулярность минерализации, на этапах которой мы подробно остановимся ниже.

По мере созревания меняется белковый профиль эмали. На начальном этапе формирования этой ткани соотношение амелогенинов и энамелинов составляет 9:1, а среди аминокислот превалируют такие как пролин и гистидин; в зрелой наряду с уменьшением количества белка оно становится 1:1 и в аминокислотном составе начинают преобладать аспартат, серин, глицин и аланин.

Изменение белкового состава эмали связано с различием функций, осуществляемых протеинами на разных стадиях формирования зуба: вначале с транспортом и депонированием минеральных компонентов, а затем с инициацией минерализации. Еще в эмали обнаружен уникальный гидроксипролинсодержащий гликофосфопептид с Мr=3 кДа, он прочно связан с гидроксиапатитом и возникает в результате деградации коллагеноподобного белка зуба или попадает в процессе выделения его из дентина.

Третья группа белков эмали – это растворимые белки с Мr 20 кДа. Однако они не обладают сродством к минеральной фазе, не способны к образованию комплексов с кальцием и имеют менее регулярную структуру. Роль этих белков в эмали и в процессе минерализации неясна. Вполне вероятно, что они являются остаточными белками “эмалевого органа”.

Процессы минерализации. До восьмого месяца развития плода происходит формирование зачатка зуба, а к моменту рождения ребенка образуется зрелая эмаль.

Начало минерализации совпадает с разрушением полипептидов эмалевого матрикса.

I этап – протеолиз высокомолекулярных белков до низкомолекулярных с помощью катепсинов (тканевых протеаз) и плазмина.

II этап – обогащение матрикса ионами кальция и неорганическим фосфатом. Источником первого является преимущественно цитрат (см. ниже), а второй поступает за счет активации щелочной фосфатазы, которая гидролизует органические эфиры фосфорной кислоты.

III этап – фосфорилирование остатков серина в низкомолекулярных белках в результате действия протеинкиназы (рис. 2).

IV этап – с фосфорилированными остатками серина реагируют ионы кальция и неорганического фосфата (рис. 2). В конечном итоге формируется первичная ячейка гидроксиапатита (первичный кристалл).

Рис. 2. Схема некоторых этапов минерализации.

Дальнейшее формирование решетки протекает по типу эпитаксии, представляющей собой рост последующих кристаллов на базе предыдущего. При этом вновь образующиеся кристаллы ориентированы по первичному и не связаны с белком.

Наличие большого количества глутамата и аспартата в эмалевых белках и других протеинах минерализованных тканей позволяет присоединять кальций непосредственно к карбоксильной группе этих аминокислот. Кроме того, лизин коллагена способен также взаимодействовать с неорганическим фосфатом путем образования фосфамидной связи (рис.3). В костной ткани преципитация кальция и фосфата возможна не только на белках, но и на углеводах и липидах.

Амелогенез во многом определяется белковой матрицей. Ингибирование протеолиза, согласно гипотезы Robinson и Kirkham (1984), способствует сохранению белка и нарушает амелогенез, что может быть причиной гипоплазии эмали и флюороза.

После прорезывания зубов процесс созревания эмали продолжается и он тесно связан с поступлением минеральных компонентов через приобретенную пелликулу зуба из смешанной слюны.

Рис. 3. Возможные варианты формирования первичного кристалла.

С возрастом происходит накопление Са2+ в поверхностном слое эмали, при этом меняется соотношение Са/Р с 1,51 до 1,86. Это процесс динамичный и зависит от анатомической принадлежности зуба, места его расположения, топографии участка зуба и других факторов. Так, наиболее быстро созревает эмаль в области режущих краев и бугров (в течение 4-6 месяцев после прорезывания). От степени созревания эмали в определенной мере зависит кариесрезистентность зубов.

Регуляция процессов минерализации. Для минерализации костей, твердых тканей зуба необходимо поддержание определенных концентраций ионов кальция и неорганического фосфата в плазме крови, слюне и надкостнице. В организме взрослого человека содержится в среднем 1000 г кальция. Основным его депо в организме (99%) являются кости. В костях около 99% кальция присутствует в виде малорастворимой формы кристаллов гидроксиапатита. Другой фонд кальция – это кальций плазмы крови. В плазму крови кальций поступает из кишечника (с водой и пищей) и из костной ткани (в прцессе резорбции). Нормальное протекание процессов минерализации обеспечивается тем, что концентрация Са2+ в крови варьирует в очень узких пределах (2,12-2,60 ммоль/л – у взрослых; 2,74-3,24 ммоль/л – у детей), более широкие колебания характерны для цифр неорганического фосфата (0,64-1,29 ммоль/л – у взрослых; 1,29-2,26 ммоль/л – у детей). В механизм регуляции гомеостаза этих ионов включены три гормона – паратироидный (паратгормон), кальцитонин и кальцитриолы (1,25(ОН)2D3 и 24,25(ОН)2D3).

Паратироидный гормон (ПТГ) продуцируется околощитовидными железами и по механизму действия является антагонистом тирокальцитонина. Паратгормон – это полипептид, состоящий из 84 аминокислотных остатков, синтезируется в виде препрогормона (115 аминокислот). От последнего в результате частичного гидролиза в эндоплазматической сети отщепляется 25 аминокислотных остатков и образуется прогормон; далее в комплексе Гольджи от него отщепляется гексапептид и образуется активный гормон. Паратгормон упаковывается и хранится в секреторных гранулах (везикулах). В крови он транспортируется в связанном с белком состоянии. Основной стимул секреции данного гормона – низкий уровень Са2+ во внеклеточной жидкости (менее 2,0 ммоль/л). Вид рецепции данного гормона трансмембранный, через ц-3`,5`-АМФ. Органы-мишени: костная ткань, почки и кишечник. В клетках почек и костной ткани локализованы специфические рецепторы, которые взаимодействуют с паратгормоном, в результате чего инициируется каскад событий, приводящий к активации аденилатциклазы. Внутри клеток органов мишеней возрастает концентрация молекул цАМФ, действие которых стимулирует мобилизацию ионов кальция из внутриклеточных запасов. Ионы кальция активируют киназы, которые фосфорилируют особые белки, индуцирующие транскрипцию специфических генов.

Биологические эффекты. В костной ткани рецепторы ПТГ локализованы на остеобластах и остеоцитах, но не обнаружены на остеокластах. При связывании паратгормона с рецепторами клеток-мишеней остеобласты начинают усиленно секретировать инсулиноподобный фактор роста 1 и цитокины. Эти вещества стимулируют метаболическую активность остеокластов. В частности, ускоряется образование ферментов, таких как щелочная фосфатаза и коллагеназа, которые воздействуют на компоненты костного матрикса, вызывают его распад, в результате чего происходит мобилизация Са и фосфатов из кости во внеклеточную жидкость.

В почках ПТГ стимулирует реабсорбцию кальция в дистальных извитых канальцах и тем самым снижает экскрецию кальция с мочой, уменьшает реабсорбцию фосфатов.

Кроме того, паратгормон способствует гидроксилированию 25-гидроксихолекаль-циферола в кальцитриол (1,25 (ОН)2D3). Последний усиливает всасывание Са в кишечнике.

Таким образом, паратгормон восстанавливает нормальный уровень ионов Са во внеклеточной жидкости как путем прямого воздействия на кости и почки, так и действуя опосредованно (через стимуляцию синтеза кальцитриола) на слизистую оболочку кишечника, увеличивая в этом случае эффективность всасывания Са. Снижая реабсорбцию фосфатов из почек, паратгормон способствует уменьшению концентрации фосфатов во внеклеточной жидкости.

Кальцитриолы (1,25(ОН)2D3 и 24,25(ОН)2D3) оказывают воздействие на тонкий кишечник, кости и почки. Подобно другим стероидным гормонам, витамин D связывается с внутриклеточным рецептором клетки-мишени. Образуется комплекс гормон-рецептор, который взаимодействует с хроматином и индуцирует транскрипцию структурных генов, в результате чего синтезируются белки, опосредующие действие кальцитриола.

Так, в клетках кишечника кальцитриол индуцирует синтез Са-переносящих белков, которые обеспечивают всасывание ионов кальция и фосфатов из полости кишечника в эпителиальные клетки кишечника и далее транспорт из клетки в кровь, благодаря чему концентрация ионов кальция во внеклеточной жидкости поддерживается на уровне, необходимом для минерализации органического матрикса костной ткани.

В почках кальцитриол стимулирует реабсорбцию ионов кальция и фосфатов. При недостатке витамина D нарушается образование аморфного фосфата кальция и кристаллов гидроксиапатитов в органическом матриксе костной ткани, что приводит к развитию рахита и остеомаляции. Обнаружено также, что при низкой концентрации ионов Са кальцитриол способствует мобилизации кальция из костной ткани. Кальцитриол способен также усиливать действие паратгормона на реабсорбцию кальция в почках.

Кальцитонин - полипептид, состоящий из 32 аминокислотных остатков с одной дисульфидной связью. Гормон секретируется парафолликулярными К-клетками щитовидной железы или С-клетками паращитовидных желез в виде высокомолекулярного белка-предшественника. Секреция кальцитонина возрастает при увеличении концентрации Са и уменьшается при снижении концентрации Са в крови. Кальцитонин – функциональный антагонист паратгормона. Он ингибирует (через ц-3,5-АМФ) высвобождение Са из кости, снижая активность остеокластов. Кроме того, кальцитонин подавляет канальцевую реабсорбцию ионов кальция в почках, тем самым стимулируя их экскрецию почками с мочой. Скорость секреции кальцитонина у женщин сильно зависит от уровня эстрогенов. При недостатке эстрогенов секреция кальцитонина снижается. Это вызывает ускорение мобилизации кальция из костной ткани, что приводит к развитию остеопороза.

Паротин – гормон белковой природы с молекулярной массой 100 кДа, вырабатывается в околоушных слюнных железах. Впервые выделен из бычьих околоушных желез. Белки, сходные с паротином, выделены также из подчелюстных слюнных желез (S-паротин), слюны (паротин А, В и С), крови, мочи. Все эти соединения способствуют развитию и росту мезенхимальных тканей, усиливают пролиферацию и кальцинацию дентина зуба. Паротин снижает содержание кальция в крови за счет стимуляции его поступления в ткани зуба, наряду с фосфатом и натрием.

В регуляции роста кости то или иное участие принимают почти все другие гормоны, медиаторы и модуляторы. Простагландины, особенно ПГЕ1, снижают фосфатуритическую реакцию клеток почечных канальцев на паратгормон. Глюкокортикоиды необходимы для роста костей. В физиологических концентрациях они стимулируют обмен веществ в костной ткани, повышая чувствительность клеток к паратгормону и кальцитриолам. Инсулин активирует остеобласты и всасывание кальция в кишечнике. Поэтому при сахарном диабете I типа нарушается рост скелета и минерализация костей. Йодтиронины (Т3 и Т4) также необходимы для нормального роста костей. При их избытке активируются остеокласты и возникает гиперкальцемия. Эстрогены и андрогены принимают участие в механизмах бурного роста в пубертатном периоде. В детстве и в период полового созревания они обеспечивают преобладание процессов костеобразования над резорбцией.

Процессы минерализации находятся также под контролем некоторых витаминов.

Витамин С способствует созреванию коллагена через образование гидроксипролина. Зрелый протеин способен связывать ионы кальция и фосфатов, формируя кристаллы гидроксиапатита. Витамин А влияет на скорость биосинтеза гликозаминогликанов – одного из органических компонентов дентина и цемента. Из холестерола в коже под воздействием ультрафиолетовых лучей синтезируется провитамин D (кальцитриол).

Функции эмали зуба. Эмаль – это бессосудистая и самая твердая ткань организма. Кроме того, эмаль остается относительно неизменной в течение всей жизни человека. Указанные свойства объясняются функцией, которую она выполняет – защищает дентин и пульпу от внешних механических, химических и температурных раздражителей. Только благодаря этому зубы выполняют свое назначение – откусывают и измельчают пищу. Структурные особенности эмали приобретены в процессе филогенеза.

Явление проницаемости эмали зуба осуществляется благодаря омыванию эмали снаружи ротовой жидкостью, а со стороны пульпы – тканевой и наличию пространств в эмали, заполненных жидкостью. Возможность проникновения в эмаль воды и некоторых ионов известна с конца прошлого и начала нынешнего столетия. Так, C.F.Bedecker (1996) утверждал, что зубная лимфа может проходить через эмаль, нейтрализуя молочную кислоту и постепенно увеличивая плотность за счет содержащихся в ней минеральных солей.

В настоящее время проницаемость эмали изучена довольно подробно, что позволило пересмотреть ряд ранее существовавших представлений. Если считалось, что вещества в эмаль поступают по пути: пульпа – дентин – эмаль, то в настоящее время не только установлена возможность поступления веществ в эмаль из слюны, но и доказано, что этот путь является основным. Эмаль проницаема в обоих направлениях: от поверхности эмали к дентину и пульпе и от пульпы к дентину и поверхности эмали. На этом основании эмаль зуба считают полупроницаемой мембраной. Некоторые авторы считают, что проницаемость – это главный фактор созревания эмали зубов после прорезывания.

studfiles.net

Биохимия костной ткани, тканей зуба

Костная ткань - это особый вид соединительной ткани. Костная ткань имеет особенности строения, которые не встречаются в других видах соединительной ткани. В ней преобладает межклеточное вещество, содержащее большое количество минеральных компонентов, главным образом - солей кальция. Основные особенности кости - твердость, упругость, механическая прочность.

В компактном веществе кости большая часть минеральных веществ представлена гидроксилапатитом (смотрите рисунок) и аморфным фосфатом кальция. Кроме них встречаются карбонаты, фториды, гидроксиды и значительное количество цитрата. Химический состав костной ткани (в%%): 20% - органический компонент, 70% - минеральные вещества, 10% - вода. Губчатое вещество: 35-40% - минеральных веществ, до 50% - органические соединения, содержание воды - 10%.

Особенность минерального компонента в том, что фактическое соотношение кальций/фосфор равно 1,5, хотя расчетное соотношение должно быть 1,67. Это позволяет кости легко связывать или отдавать ионы фосфата, поэтому кость - это депо для минералов, особенно для кальция.

Факторы влияющие на обмен кальция и фосфора

На обменкальция и фосфора влияют гормоны паратгормон, серотонин и активная форма витамина D3. Особое место среди нарушений обмена кальция и фосфора занимают остеопороз, некоторые формы рахита, некоторые заболевания почек. За сутки из кишечника всасывается примерно 1 грамм кальция и только 1/3 от этого количества усваивается тканями организма. Столько же - 1грамм кальция - ежесуточно теряется с мочой и калом. В межклеточных жидкостях содержится тоже в среднем 1 грамм кальция. Значит, за одни сутки полностью обновляется весь внеклеточный кальций организма. У взрослого здорового человека в возрасте до 40 лет все процессы минерализации и резорбции костной ткани находятся в равновесии. У детей до окончательного окостенения наблюдается положительный кальциевый баланс. После 40-летнего возраста - отрицательный баланс кальция.

Паратгормон влияет на процессы созревания активного витамина D3 в почках. Активный витамин D3 (1,25-диоксивитамин D3) увеличивает всасывание кальция в кишечнике и повышает усвоение кальция костной тканью, усиливает действие паратгормона в костной ткани и почках.

Регуляция синтеза и секреции паратгормона и кальцитонина

Главным регулятором синтеза и секреции этих гормонов является внеклеточный кальций. Если уменьшается его концентрация во внеклеточной жидкости, это приводит к увеличению секреции кальцитонина и уменьшению секреции паратгормона и наоборот. На выработку паратгормона также влияют катехоламины, которые усиливают его секрецию.

Кортикосстероиды (кортизол) тормозят всасывание кальция в кишечнике, увеличивают синтез и секрецию паратгормона. Повышение содержания фосфатов в крови, приводя к одновременному снижению уровня кальция, также усиливает секрецию паратгормона.

Суммарной эффект паратгормона - резорбция костной ткани. Разрушению подвергается не только минеральный компонент, но и компоненты органического матрикса. Это подтверждается повышенным содержанием оксипролина (показатель ускорения разрушения коллагеновых белков) в моче при гиперсекреции паращитовидной железы. Значит, паратгормон в физиологических условиях способствует обновлению костной ткани, то есть происходит стимуляция остеокластов и одновременно усиливается пролиферация остеобластов. При действии паратгормона в костной ткани происходит закисление (снижение pH среды), так как в межклеточное пространство выделяются лактат и цитрат и повышается активность различных гидролитических ферментов, в том числе и лизосомальных протеиназ.

Кроме повышения концентрации кальция и понижения концентрации фосфатов в крови при гиперпаратиреозе может развиваться образование камней в почках - нефрокальциноз. Причина этого - постоянно повышенная концентрация кальция в крови и моче.

Вторичный гиперпаратиреоз при заболеваниях почек возникает при нарушении созревания активной формы витамина D3. Результат: снижение концентрации кальция в крови, что приводит к увеличению выработки паратгормона.

Гипопаратиреоз. Снижение уровня паратгормона в крови (может возникнуть при повреждении или удалении паращитовидных желез) приводит к снижению концентрации кальция и повышению концентрации фосфора в крови. В результате могут развиваться судороги, паралич дыхательной мускулатуры, ларингоспазм, что приводит к смерти больного.

Кальцитонин

Пептидный гормон, состоит из 30 аминокислот. Клетки-мишени для этого гормона находится в костной ткани. Гормон обладает мембранным механизмом действия (действует через аденилатциклазную систему). Под действием кальцитонина происходит усиление перехода фосфатов в периостальную жидкость, в результате разрушения фосфорных эфиров различных органических соединений в клетках костной ткани. Выход фосфатов в межклеточное вещество способствует задержке кальция в костной ткани.

Таким образом, кальцитонин ингибирует процессы резорбции кости.

Органический матрикс кости

Важный компонент органического матрикса - кальций-связывающий белок. Он состоит из 49 аминокислот, содержит 3 остатка гамма-карбоксиглутаминовой кислоты. Функция кальций-связывающего белка - регуляция связывания кальция в костях и зубах.

Основной белок костной ткани - коллаген, который содержится в количестве 15% - в компактном веществе, 24% - в губчатом веществе. Количество неколлагеновых белков составляет от 5 до 8%. В основном это белки- гликопротеины и белково-углеводные комплексы - протеогликаны.

Костный коллаген - коллаген типа 1 - в нем больше, чем в других видах коллагена, содержится оксипролина, лизина и оксилизина, отрицательно заряженных аминокислот, с остатками серина связано много фосфата, поэтому костный коллаген - это фосфопротеин. Благодаря своим особенностям костный коллаген принимает активное участие в минерализации костной ткани.

В зрелом организме процессы минерализации и резорбция кости находятся в состоянии динамического равновесия. Минерализация - это формирование кристаллических структур минеральных солей костной ткани. Активное участие в минерализации принимают остеобласты. Для минерализации требуется много энергии ( в форме АТФ ).

Можно выделить два основных этапа минерализации.

Этапы минерализации костной ткани

1-й этап: остеобласты начинают синтезировать костный коллаген, который содержит фосфаты и формирует хондроитинсульфаты. Костный коллаген является матрицей для процесса минерализации. Особенностью процесса минерализации является пересыщение среды ионами кальция и фосфора. На 1 этапе минерализации кальций и фосфор связываются с костным коллагеном. Обязательный участник процесса - сложные липиды.   2-й этап - в зоне минерализации усиливаются окислительные процессы, распадается гликоген, синтезируется необходимое количество АТФ. Кроме того, в остеобластах увеличивается количество цитрата, необходимого для синтеза аморфного фосфата кальция. Одновременно из лизосом остеобластов выделяются кислые гидролазы, которые взаимодействуют с белками органического компонента и приводят к образованию ионов аммония и гидроксид-ионов, которые соединены с фосфатом. Так формируются ядра кристаллизации. Ионы кальция и фосфора, которые были связаны с белково-углеводным комплексом, переходят в растворимое состояние и формируют кристаллы гидроксилапатита. По мере роста кристаллы гидроксилапатита вытесняют протеогликаны и даже воду до такой степени, что плотная ткань становится практически обезвоженной. Ингибитор процесса минерализации - неорганический пирофосфат. Его накопление в кости может препятствовать росту кристаллов. Чтобы этого не происходило, в остеобластах есть щелочная фосфатаза, которая расщепляет пирофосфат на два фосфатных остатка. При нарушении процессов минерализации - например, при заболевании оссифицирующим миозитом - кристаллы гидроксиапатита могут появлятся в сухожилиях, связках, стенках сосудов. Вместо кальция в костную ткань могут включаться другие элементы - стронций, магний, железо, уран и т.д. После формирования гидроксилапатита такое включение уже не происходит. На поверхности кристаллов может накапливаться много натрия в форме цитрата натрия. Кость выполняет функции лабильного (изменчивого) депо натрия, который выделяется из кости при ацидозе и, наоборот, при избытке поступления натрия с пищей, чтобы предотвратить алкалоз - натрий депонируется в кости. В ходе роста и развития организма количество аморфного фосфата кальция уменьшается, потому что кальций связывается с гидроксилапатитом.

Биохимия тканей зуба  

Твердые ткани зуба - к ним относят эмаль ( в коронке зуба), дентин и цемент ( на поверхности корня). В отличие от других видов костной ткани, ткани зуба еще более минерализованы.

   

В заметных количествах в твердых тканях зуба содержатся магний, натрий, калий, хлор (их больше в цементе и в эмали).

Эмаль   Содержит гидроксилапатит, фторапатит, фторид кальция. Соотношение кальций/фосфор в эмали равно 1,75, поэтому эмаль еще более минерализирована, чем кость. С возрастом это соотношение доходит до 2,09. Органическое вещество эмали образуют в основном белки - амелогенины. Основная функция этих белков - формирование нерастворимой органической матрицы эмали, которая затем минерализируется благодаря особому кальций-связывающему белку эмали. В состав эмали также могут входить глюкозаминогликаны и цитрат. Особенности метаболизма эмали - это крайне низкая скорость обмена. Обмен ионами возможен со стороны полости рта - через слюну.

Дентин   Дентин в отличие от эмали содержит много сиалопротеинов (это неколлагеновые белки). По степени минерализации дентин аналогичен компактному веществу костной ткани. Минеральный компонент - гидроксилапатит, в котором чаще, чем в кости, обнаруживается магний. Фтористые соли также содержатся в дентине. В состав органического вещества дентина входит коллаген, богатый фосфатом, хондроитинсульфаты, гиалуроновая кислота. При развитии кариеса в поврежденном дентине и уменьшается количество оксипролина и оксилизина и растет количество глюкозаминогликанов. Клеточные элементы - одонтобласты.

Цемент

Цемент еще менее минерализован, чем дентин. Здесь больше воды и протеогликанов. Клеточные элементы - цементобласты.  

Пульпа   Это особая соединительная ткань, похожая на эмбриональную соединительную ткань. Поскольку пульпа наиболее метаболически активна, в ней много ферментов. Кроме фибропластов, в пульпе есть и жировые клетки. В межклеточном веществе - гликопротеины, глюкозаминогликаны. Волокнистая структура пульпы - это тонкие коллагеновые волокна. Функция пульпы: формирование дентина и обеспечение метаболических процессов в дентине.

medbe.ru

Биохимия полости рта - Лекция 1 Биохимия твердых тканей зуба

uhimik.ru

С этим файлом связано 34 файл(ов). Среди них: tmp35486195.gif, [Медкниги]biokhimicheskie_osnovy_sbalansirovannogo_pitaniya_obsh, Washington_Irving_Rip_van_Winkle.pdf, ГЛИКОЛИПИДЫ.ppt.ppt, Ray_Bradbury_A_Sound_of_Thunder.pdf и ещё 24 файл(а).Показать все связанные файлы

Биохимия полости рта

Лекция № 1

Биохимия твердых тканей зуба.

К таким тканям относятся эмаль, дентин, цемент зуба. Эти ткани отличаются друг от друга различным происхождением в онтогенезе. Поэтому отличаются по химическому строению и составу. А также по характеру метаболизма. В них эмаль – эптодермального происхождения, а кость, цемент, дентин – мезентимального происхождения, но , несмотря на это, все эти ткани имеют много общего, состоят из межклеточного вещества или матрицы, имеющего углеводно-белковую природу и большое количество минеральных веществ, в основном, представленных кристаллами апатитов.

Степень минерализации:

Эмаль –> дентин –> цемент –> кость.

В этих тканях следующее процентное содержание:

Минеральн.вещ. Органич. вещ.

Вода

Эмаль 95% 1 – 1,5% 4%
Дентин 70% 20% 10%
Цемент 50% 27% 13%
Кость 45% 30% 25%
Эти кристаллы имеют гексогенальную форму.Минеральные компоненты эмали

Они представлены в виде соединений, имеющих кристаллическую решетку

A (BO ) K

A = Ca, Ba, кадмий, стронций

В = РО , Si, As, CO .

K = OH, Br, J, Cl.

  1. гидроксиапатит – Са (РО ) (ОН) в эмали зуба 75% ГАП – самый распространенный в минерализованных тканях
  2. карбонатный апатит – КАП – 19% Са (РО ) СО – мягкий, легко растворимый в слабых кислотах, целочах, легко разрушается
  3. хлорапатит Са (РО ) Сl 4,4% мягкий
  4. стронцевый апатит (САП) Са Sr (PO ) - 0,9% не распространен в минеральных тканях и распространен в неживой природе.

Мин. в-ва 1 – 2% в неапатитной форме, в виде фосфорнокислого Са, дикальциферата, ортокальцифосфата. Соотношение Са / Р – 1,67 соответствует идеальному соотношению, но ионы Са могут замещаться на близкие по свойству химические элементы Ва, Сr, Mg. При этом снижается соотношение Са к Р, оно уменьшается до 1,33%, изменяются свойства этого апатита, уменьшается резистентность эмали к неблагоприятным условиям. В результате замещения гидроксильных групп на фтор, образуется фторапатит, который превосходит и по прочности и по кислотоустойчивости ГАП.

Са (РО ) (ОН) + F = Ca (PO ) FOH гидроксифторапатит

Са (РО ) (ОН) + 2F = Ca (PO ) F фторапатит

Са (РО ) (ОН) + 20F = 10CaF + 6PO + 2OH фторид Са.

СаF - он прочный, твердый, легко выщелачивается. Если рн сдвигается в щелочную сторону, происходит разрушение эмали зуба, крапчатость эмали, флюороз.

Стронцевый апатит – в костях и зубах животных и людей, живущих в регионах с повышенным содержанием радиоактивного стронция, они обладают повышенной хрупкостью. Кости и зубы становятся ломкими, развивается стронцевый рахит, беспричинный, множественный перелом костей. В отличие от обычного рахита, стронцевый не лечится витамином Д.Особенности строения кристалла

Наиболее типичной является гексогенальная форма ГАП, но может быть кристаллы с палочковидной, игольчатой, ромбовидной. Все они упорядочены, определенной формы, имеют упорядоченные эмаль.призмы – явл-ся структурной единицей эмали.

4 структуры:

кристалл состоит из элементарных единиц или ячеек, таких ячеек может быть до 2 тысяч. Мол.масса = 1000. Ячейка – это структура 1 порядка, сам кристалл имеет Mr = 2 000 000, он имеет 2 000 ячеек. Кристалл – структура 2 порядка.Эмалевые призмы являются структурой 3 порядка. В свою очередь, эм.призмы собраны в пучки, это структура 4 порядка, вокруг каждого кристалла находится гидратная оболочка, любое приникновение веществ на поверхность или внутрь кристалла связано в этой гидратной оболочкой.

Она представляет собой слой воды, связанной с кристаллом, в котором происходит ионный обмен, он обеспечивает постоянство состава эмали, называется эмалевой лимфой.

Вода внутрикристаллическая, от нее зависят физиологические свойства эмали и некоторые химические свойства, растворимость, проницаемость.

Вид: вода, связанная с белками эмали. В структуре ГАП соотношение Са / Р – 1,67. Но встречаются ГАП, в которых это соотношение колеблется от 1,33 до 2.

Ионы Са в ГАПе могут быть замещены на близкие по свойствам в Са другие хим.эл-ты. Это Ba, Mg, Sr, реже Na,K, Mg, Zn, ион H O. Такие замещения называются изоморфными, в тезультате соотношение Са / Р падает. Таким образом, образуется из ГАП – ГФА.

Фосфаты могут заместиться на ион РО НРО цитрат.

Гидрокситы замещаются на Cl, Br, F , J .

Такие изоморфные зам-я приводят к тому, что изменяется и св-во апатитов – резистентность эмали к кислотам и к кариесу падает.

Существуют другие причины изменения состава ГАП, наличие вакантных мест в кристалл.решетке, которые должны быть замещены с одним из ионов, возникают вакантные места чаще всего при действии кислот, уже в сформированном присталле ГАП, образование вакантных мест приводит к изменению св-в эмали, проницаемости, раствопимости, адсорб.св-ва.

Нарушается равновесие между процессом де- и реминерализации. Возникают оптим.усл-я для хим.реакций на поверхности эмали.Физико-химические св-ва кристалла апатита

Одним из важнейших вс-в кристалла явл-ся заряд. Если в кристалле ГАП 10 ост.Са, тогда считают 2 х 10 = 3 х 6 + 1 х 2 = 20 + 20 = 0.

ГАП электонейтрален, если в структуре ГАП содер-ся 8 ионов Са – Са (РО ) , то 2 х 8 20 = 16

Стадии проникновения в-в в кристал.ГАП

3 стадии

  1. ионный обмен между раствором, который омывает кристалл – это слюна и зубдесневая жидкость с его гдратной оболочкой. В нее поступают ионы, нейтрализующие заряд кристалла Са, Sr, Co, PО, цитрат. Одни ионы могут накапливаться и также легко покидать, не проникая внутрь кристалла – это ионы К и Cl, другие ионы проникают в поверхностный слой кристалла – это ионы Na и F. Стадия происходит быстро в течение неск.минут.
  2. это ионный обмен между гидратной оболочкой и поверхностью кристалла, происходит отрыв иона от пов-сти кристалла и замена их на др.ионы из гидратной оболочки. В результате уменьшается или нейтрал-ся поверхн.заряд кристалла и он приобретает устойчивость. Более длительная, чем 1 стадия. В течение неск.часов. Проникают Ca, F, Co ,Sr, Na, P.
  3. Проникновение ионов с поверхности внутрь кристалла – называется внутрикристаллический обмен, происходит очень медленно и по мере проникновения иона скорость этой стадии замедляется. Такой способностью обладают ионы Ра, F, Са, Sr.
Наличие вакантных мест в кристалл.решетке явл-ся важным фактором в активации изоморфных замещений внутри кристалла. Проникновение ионов в кристалл зависит от R иона и уровня Е, которой он обладает, поэтому легче проникают ионы Н , и близкие по строению к иону Н . Стадия протекает дни, недели, месяцы. Состав кристалла ГАП и свойства их постоянно изменяются и зависят от ионного состава жидкости, которая омывает кристалл и состава гидратной оболочки. Эти св-ва кристаллов позволяют целенаправленно изменять состав твердых тканей зуба, под действием реминерализующих растворов с целью профилактики или лечения кариеса.Органические в-ва эмали

Доля орг.в-в 1 – 1,5%. В незрелой эмали до 20%. Орг.в-ва эмали влияют на биохимические и физические процессы, происходящие в эмали зуба. Орг.в-ва нах-ся между кристаллами апатита в виде пучков, пластинок или спирали. Осн.представители – белки, углеводы, липиды, озотсодержащие в-ва (мочевина, пептиды, цикл.АМФ, цикл.аминокислоты).

Белки и углеводы входят в состав органич.матрицы. Все процессы реминерализации происходят на основе белковой матрицы. Большая часть представлена коллагеновыми белками. Они обладают способностью инициировать реминерализацию.

  1. а) белки эмали – нерастворимы в кислотах, 0,9% ЭДТА. Они относятся к коллаген- и керамидо- подобным белкам с большим количеством сер, оксипролина, гли, лиз. Эти белки играют защитную ф-цию в процессе деминерализации. Не случайно в очаге деминерализации на ст.белого или пигментированного пятна кол-во этих белков > в 4 раза. Поэтому кариозное пятно в течение нескольних лет не превращается в кариозную полость, а иногда вообще не развивается кариес. У пожилых людей к кариесу > резистентность. б) кальцийсвязывающие белки эмали. КСБЭ. Содержат ионы Са в нейтральной и слабощелочной среде и способствуют проникновению Са из слюны в зуб и обратно. На долю белков А и Б приходится 0,9% от общей массы эмали.
  2. Б.растворимые в воде не связанные с минеральными в-вами. Они не обладают сродством к минер.компонентам эмали, не могут образовывать комплексы. Таких белков 0,3%.
  3. Своб.пептиды и отд.аминокислоты, такие как промин, гли, вал, оксипролин, сер. До 0,1%
  1. ф-я защитная. Белки окружают кристалл. Предупреждают процесс деминерализации
  2. белки инициируют минерализацию. Активно участвуют в этом процессе
  3. обеспечивают минер.обмен в эмали и др.твердых тканях зуба.

Углеводы представлены полисахаридами: глюкоза, галактоза, фруктоза, гликоген. Дисахариды нах-ся в свободной форме, а образуются белковые комплексы – фосфо-гликопротеиды.

Липидов очень мало. Представлены в виде гликофосфолипидов. При образовании матрицы они выполняют роль связующих мостиков между белками и минералами.

Дентин уступает по твердости. Наиболее важными элементами дентина являются ионы Са, РО , Со , Мg , F. Mg сод-ся в 3 раза больше, чем в эмали. Концентрация Na и Cl возрастает во внутренних слоях дентина.

Основное в-во дентина состоит из ГАП. Но в отличие от эмали, дентин пронизан большим количеством дентинных канальцев. Болевые ощущения передаются по нервным рецепторам. В дентинных канальцах нах-ся отростки клеток одонтобластов, пульпа и дентинная жидкость. Дентин составляет основную массу зуба, но явл.менее минерализов.в-вом, чем эмаль, по строению напоминает грубоволокнистую кость, но более твердый.

Органич.в-ва

Белки, липиды, углеводы, ….

Белковый матрикс дентина - 20% от общей массы дентина. Состоит из коллагена, на его долю приходится 35% всех органических в-в дентина. Это свойство характерно для тканей лизин…мального происхождения, сод.глюкозаминогликогены (…….атинсульфат), галактозу, гексазамиты и гелиуроновая кислоты. Дентин богат активными регуляторными белками, которые регулируют процесс реминерализации. К таким спец.белкам отн-ся амелогенины, энамелины, фосфопротеиды. Для дентина, как и для эмали, характерен заледленный обмен мин.компонентов, что имеет большое значение для сохранения стабильности тканей в условиях повышенного риска деминерализации, стресса.Цемент зуба

Покрывает тонким слоем весь зуб. Первичный цемент образован минеральным в-вом, в котором в разных направлениях проходят коллагеновые волокна, клеточные элементы – цементобласты. Цемент зрелого зуба мало обновляется. Состав: минер.компоненты в основном представлены карбонатами и фосфатами Са. Цемент не имеет как эмаль и дентин, собственных кровеносных сосудов. В верхушке зуба – клеточный цемент, основная часть – бесклеточный цемент. Клеточный напоминает кость, а бесклеточный состоит из колл.волокон и аморфного в-ва, склеивающего эти волокна.

Пульпа зуба. Лекция № 2

Это рыхлая соединит.ткань зуба, заполняющая коронковую полость и корневой канал зуба с большим количеством нервов и кровеносных сосудов, в пульпе есть коллагеновые, но нет эластических волокон, есть клеточные элементы, представленные одонтобластами, макрофагами и фибробластами. Пульпа является биологическим барьером защищающим зуб.полость и периодонт от инфекции, выполняет пластическую и трофическую функцию. Характеризуется повыш-ой активностью окислительно-восстановит.процессов, а поэтому высоким потреблением О . Регуляция энергетического баланса пульпы осуществяется путем сопряжения окисления с фосфорилированием. О высоком уровне биологич.процессов в пульпе говорят наличие таких процессов, как ПФП, синтез РНК, белков, поэтому пульпа богата ферментами, осуществляющими эти процессы, но особенно свойственен для пульпы углеводный обмен. Есть ферменты гликолиза, ЦТК, водно-минерального обмена (щелочн.и кислая фосфотозы), трансаминазы, аминопептидазы.

В результате этих процессов обмена обр-ся множество промежуточных продуктов, которые поступают из пульпы в твердые ткани зуба. Все это обеспечивает высокий уровень …., реакт-и и защитн.мех-ов.

При патологии активность этих ферментов повышается. При кариесе происходят деструктивные изменения в одонтобластах, разрушение коллагеновых волоккон, появл-ся кровоизлияния, изменяется активность ферментов, обмен в-в в пульпе.Пути поступления в-в в твердые ткани зуба и проницаемость эмали

Зуб имеет контакт со смешанной слюной, с другой стороны – …. крови, от их сост-я зависит сост-е твердых тканей зуба. Осн.часть органич.и минер.в-в, которые поступают в эмаль зуба, содержатся в слюне. Слюна действует на эмаль зуба и вызывает набухание или сморщивание коллагеновых барьеров. В результате происходит изменение проницаемости эмали. Вещества слюны обмен-ся с веществами эмали и на этом основаны процессы де- и реминерализации. Эмаль – это полупроницаемая мембрана. Она легко проницаема для Н О, ионов (фосфаты, бикарбонаты, хлориды, фториды, катионы Са, Mg, K, Na, F, Ag и др.). они и определяют нормальный состав эмали зуба. Проницаемость зависит и от других факторов: от хим.стр-ры в-ва и св-в иона. Размеры апатитов от 0,13 - 0,20 нм, расстояние между ними 0,25 нм. Любые ионы должны проникать через эмаль, но определить проницаемость с т.зр. Мr или размеров ионов нельзя, имеют место другие св-ва сродство иона к гидроксиапатиту эмали.

Основной путь поступления в-в в эмаль – простая и облегченная диффузия.

Проницаемость эмали зависит от:

  1. размеров микропространств, заполн. Н О в структуре эмали
  2. размера иона или размера молекулы в-ва
  3. способности этих ионов или молекул связываться с компонентами эмали.
Н-р, ион F (0,13 нм) легко проникает в эмаль и связывается с элементами эмали в нарушенном слое эмали, поэтому не проникает в глубокие слои. Са (0,18 нм) – адсорбируется на поверхности кристаллов эмали, а также легко входит в кристаллич.решетку, поэтому Са откладывается как в поверхностном слое, так и диффунгицирует внутри. J легко проникают в микропространство эмали, но не способны связываться с кристаллами ГАП, поступают в дентин, пульпу, затем в кровь и депонируются в щитовидной железе и надпочечниках.

Проницаемость эмали снижается под действием химич. Факторов: KCl, KNO , фтористых соединений. F взаимодействует с кристаллами ГАП, создает барьер для глубокого проникновения многих ионов и в-в. Св-ва прон-и зависят от состава смешанной слюны. Так, инта..ая слюна по-разному действует на проницаемость эмали. Это связывают с действием ферментов, которые есть в слюне. Н-р, гиалуронидоза > проницаемость Са и глицина, особенно в области кариезного пятна. Хемотрипсин и целочная фосфатоза проницаемость для всех ионов и в-в.

Доказано, что в эмаль зуба проникают амино-кислоты (лизин, глицин), глюкоза, фруктоза, галактоза, мочевина, никотинамид, вит, гормоны.

Проницаемость зависит от возраста человека: самая большая – после прорезывания зуба, она снижается к моменту созревания тканей зуба и продолжает снижаться с возрастом. От 25 до 28 лет > резистентность к кариесу, происходит сложный обмен при сохранении постоянства состава эмали.

РН слюны, а также снижение рн под зубным налетом, где образуются органические кислоты, проницаемость увеличивается вследствие активации деминерализации эмали кислотами.

Кариес > проницаемость. На стадии белого и пигментированного пятна > проницаемость, > возможность проникновения различных ионов и в-в, а также Са и фосфатов – это компенсаторные реакции в ответ на актив-ю деминерализации. Не каждое кариозное пятно превращается в кариозную полость, кариес разв-ся в течение очень длительного времени

…. ….

Гипосаливация приводит к разрушению эмали. Кариес, который возникает ночью – это ночная болезнь.

Поверхностные образования на зубах

Это муцин, кутикула, пеликула, зубной налет, камень.

Муцин – сложный белок, отн-ся к гликопротеидам слюны, который покрывает поверхность зуба и выполняет защ.ф-ю, защищает от механических и химических воздействий, его защитная роль объясняется особенностями, спецификой аминокислотного состава и особенностями содерж-ся сер, трианин, в которых содержатся до 200 аминокислот, про… К остаткам сер и трианина присоединяется за счет О-гликозидной связи. Остатки N-ацетилнейраминов. к-ты, N-ацетилглюкозамина, галактозы и ф..зы. Белок напоминает по строению гребенку, у которой имеется … белков, остатки состоящих из аминокислот, а углеводные компоненты расположены белковыми цепями, они соединяются друг с другом дисульфидными мостиками и обр-ся крупные молекулы, способные удерживать Н О. Они образуют гель.

Кутикула

Образуется перед прорезыванием зубов, состоит из … клеток, после проредвания исчезает.

Пелликула

Это тонкая, прозрачная пленка, углеводно-белковой природы. Влюч.глицин,гликопротеиды, с..аловые к-ты, отд.аминок-ты (ала, глу), Jg, A, G, M, аминосахара, которые обр-ся в результате жизнедеятельности бактерий. В строении обнаруживается 3 слоя: 2 на поверхности эмали, а третий – в поверхностном слое эмали. Пелликула покрывает зубной налет.

Зубной налет

Белая мягкая пленка, наход-ся в области шейки и на всей поверхности. Удаляется во время чистки и жесткой пищей. Это кариесогенный фактор. Представляет деструктивное орган.в-во с большим кол-вом ../о, которые нах-ся в полости рта, а также продуктов их жизнедеятельности. В 1 г зубного налета сод-ся 500 х 10 микроб.клеток (стрептококки). Различают ранний зубной налет (в течение первых суток), зрелый зубной налет (от 3 до 7 суток).

3 гипотезы образования зубного налета

  1. преципитация гликопротеидов слюны, которые а…ируют в бактериях
  2. приципитация внутриклеточных полисахаридов. Образуются стрептококками, наз-ся декстран и леван. Если центрифугировать зубной налет и пропустить его через фильтр, то выделяется 2 фракции, клеточная и бесклеточная. Клеточная – эпителиальные клетки, стрептококки, (15%). ….ты, дифтероиды, стафиллококки, дрожжеподобные грибы – 75%.

В зубном налете 20% - сухого в-ва, 80% - Н О. В сухом в-ве есть минер.в-ва, белки, улеводы, липиды. Из минер.в-в: Са – 5 мкгр/в 1 г сухого в-ва зубного налета. Р – 8,3, Na – 1,3, К – 4,2. Есть микроэлементы Са, Str, Fe, Mg, F, Se. F сод.в зубном налете в трех формах:

1) CaF - фторид Ca

  1. комплекс белка CF
  2. F в строении М/О

Одни микроэлементы снижают восприимчивость зубов к кариесу F, Mg, другие снижают устойчивость к кариесу – Se, Si. Белки из сухого налета – 80%. Белковый и аминокислотный состав неидентичен таковым смешан.слюны. По мере созревания аминокислот они изменяются. Исчезает гли, арг, лиз, > глутомата. Углеводов 14% - фруктоза, глюкоза, гексозамины, с..аловые кислоты и кисл., и глюкозаминами.

При участии ферментов бактерий зубного налета, из глюкозы синтезируются полимеры – декстран, из фруктозы - леван. Они и составляют основу органич.матрицы зубного налета. Участвующие в пре…ции микроорганизмы расщепляющся соответственно декстр..зной и леванозной кариесогенных бактерий стрептококков. Обр-ся огран.к-ты: мактак, пируват, уксусная, пропионовая, лимонная. Это приводит к снижению под зубным налетом на поверхности эмали рн до 4,0. Это кариесогенные условия. Поэтому зубной налет является одним из важных этиологич.и патогенных звеньев в развитиии кариеса и болезней пародонта.

Липиды

В раннем зубном налете – триглицериды, кс, глицерофосфолипиды. В зрелом кол-во

Много гидролитических и протеалитических ферментов. Они действуют на органический матрикс эмали, разрушая его. Отн.гликозидозы. их активность в 10 раз выше, чем в слюне. Кислая, щелочная фосфотазы, РН, ДН –нозы. Пероксидазы.

Метаболизм зубного налета зависит от характера микрофлоры. Если в ней преобладают стрептококки, то рн кристаллический.

Зубной налет минерализуясь, превращается в зубной камень. Особенно с возрастом, при некоторых видах патологии у детей – отложения зубного камня связано с врожденными поражениями сердца, С.Д.

Зубной камень (ЗК)

Это патологич.обезвествленное обр-е на поверхности зубов. Различают наддесневой, поддесневой з.к. Отличаются по локализации, химическому составу и по химизму образования.

Хим.состав з.к.

Мин.в-ва 70 – 90% сух.в-ва.

Количество минеральных в-в в з.к. различно. Темный з.к. содержит больше минеральных в-в, чем светлый. Чем > минерализован зк, мем > Mg, Si, Str, Al, Pb. Сначала обр-ся маломинерализованные в-ва зк, которые на 50% состоят из в-ва бруслит Са НРО х 2Н О.

Октокальцийфосфат Са Н (РО ) х 5Н О

Карбонатные апатиты Са (РО СО)

Са (РО ) СО (ОН ) .

Гидроксиапатит Са (РО ) (ОН

Виктолит – (Са Мg) (РО )

Есть в зк –F содержится в тех же з-х формах, что и в зубном налете.

Белки в зависимости от зрелости зк – от 0,1 – 2,5%. Кол-во белков

Зн-ие Б. В зк – это белки кальцийпреципитирующее глико-и фосфопротеиды. Углеводная часть которых представлена галактозой, фруктозой, ма…зой. В соотношении 6 : 3 : 1.

Особенность аминокислотного состава - нет циклических аминокислот

Липиды ГФЛ – синтезируются микроорганизмами зубного налета. Способны связывать Са с белками а инициировать образование ГАП. Есть в зк АТФ, она является одновременно источником энергии, а также донором фосфороорганич.в-в. при минерализации брулита и преврашении его в ТАП. Брулит превращается в октокальцийфосфат - ГАП (при рн>8). Брулит - АТФ —> октокальцийфосфат  ГАП.

Биохимические изменения в твердых тканях зуба при кариесе, профилактика кариеса методом реминерализации

Начальные биохимич.изменения возникают на границе между поверхностью эмали и основание зубного камня. Первич.клиническим проявлением явл.появление кариозного пятна (белого или пигментированного). В этом участке эмали сначала проходят процессы деминерализации, особенно выраженные в подповерхност.слое эмали, а затем происходят изменения в органическом матриксе, что приводит к > проницаемости эмали. Деминерализация происходит только в области кариозного пятна и она связана с увеличением микропространства между кристаллами ГАП, > растворимость эмали в кислой среде, возможны 2 типа реакций в зависимости от кислотности:

Ca (PO ) (OH) + 8H = 10Ca + 6 HPO + 2 H O

Ca (PO ) (OH) + 2H = Ca(H O) (PO ) (OH) + CA

Реакция № 2 приводит к образованию апатита в строении которого имеется вместо 10, 9 атомов Са, т.е. Профилактика и лечение кариеса реминерализующими средствами.

Реминерализация – это частичное изменение или полное восстановление минер.компонентов эмали зуба за счет компонентов слюны или реминерализующих растворов. Реминерализация основана на адсорбции минер.в-в в кариозные участки. Критерием эффективности реминерализующих растворов явл-ся такие св-ва эмали, как проницаемость и ее растворимость, исчезновение или уменьшение кариозного пятна,

Реминерализующие растворы обладают большим эффектом действия, чем смешанная слюна.

В составе слюны Са и Р соединается с органич.комплексами слюны и содержание этих комплексов уменьшается в слюне. Эти р-ры должны содержать F в необходимом количестве, так как он влияет на омоложение Са и Р в твердые ткани зуба и кости. При Лекция № 3

Гипотеза патогенеза кариеса

Существуют несколько гипотез:

  1. нервно-трофический кариес рассматривается как результат условий существования человека и воздействия на него факторов внешней среды. Большое значение авторы придавали ЦНС
  2. трофическая. Механизм развития кариеса заключается в нарушении трофической роли одонтобластов
  3. пелационная теория. Кариес есть результат пелации эмали комплексами смешанной слюны. Кариес – результат одновременного протеолиза орган.в-в и пелации минер в-в эмали
  4. ацидогенная или химико-кариозитозная. В основе лежит действие кислореагирующих в-в на эмаль зуба и участие тикроорганизмов в кариозном процессе. Предложена 80 лет назад и лежит в основе современной гипотезы патогенеза кариеса. Кариесобезвествленных тканей, вызыв-ся кислотами, образ. в результате действия микроорганизмов на углеводы.

Кариесогенные факторы делятся на факторы общего и местного характера.

Общего характера:

относятся неполноценное питание: избыток углеводов, недостаток Са и Р, дефицит микроэлементов, витаминов, белков и др.

Болезни и сдвиги в функцион.состоянии органов и тканей. Неблагоприятное воздействие в период прорезывания зубов и созревания и в первый год после прорезывания.

Электром.возд-ие (ионизирующая радиация, стрессы), которые действуют на слюнные железы, выделяемая слюна не соответствует нормальному составу, а она действует на зубы.

Местные факторв:

  1. зубной налет и бактерии
  2. изменение состава и св-в смешанной слюны (сдвиг рн в кислую сторону, недостаток F, уменьшается количество и соотношение Са и Р и др.)
  3. углеводная диета, углеводные пищевые остатки

Противокариесогенные факторы и кариесрезистентность зубов

  1. восприимчивость к кариесу зависит от типа минерализации твердых тканей зуба. Желтая эмаль более кариесоустойчивая. С возрастом происходит уплотнение кристаллической решетки и кариесорезистентность зубов увелич.
  2. Кариесорезистентности способствует замещение ГАП на фторапатиты – более прочные, более кислотоустойчивые и плохорастворимые. F – это противокариесогенный фактор
  3. Кариесрезистентность поверхностного слоя эмали объясняется повышенным содержанием в ней микроэлементов: станум, Zn, Fe, Va, вольфрам и др., а Se, Si, Cd, Mg – явл-ся кариесогенными
  4. Кариесорезистентности зубов способствует вит. D , C, A, B и др.
  5. Противокариесогенными св-вами обладают смешанная слюна, т.е. ее состав и свойства.
  6. Особое значение придается лимонной кислоте, цитрату.

F и стронций

F содержится во всех тканях организма. Находятся в нескольких формах:

  1. кристалл. форма фторапатита: зубы, кости
  2. в комплексе с органич. в-вами гликопротеидами. Образ-ся органический матрикс эмали, дентина, костей
  3. 2/3 общего количества F нах-ся в ионном состоянии в биол.
жидкостях: кровь, слюна. Сниж.F в эмали и дентине связано с изменением в пит.Н О.

Легче F включ.в структуру эмали в слабокислой среде, кол-во F в костях увеличивается с возрастом, а в зубах детей обнаруживается в повышенных количествах, в период созревания твердых тканей зуба и сразу после прорезывания.

При очень больших количествах F в организме возникает отравление фторсоединениями. Выражается в повыш-й хрупкости костей и их деформацией из-за нарушения Р-Са-го обмена. Как при рахите, но употребление вит.Д и А не вызывает существенного влияния на нарушение Р-Са обмена.

Большое количество F оказывает токсическое действие на весь организм, вследствие выраженного тормозящего влияния на процессы обмена углеводов, жиров, тканевого дыхания.

Роль F

Принимают участие в процессе минерализации зубов и костей. Прочность фторапатитов объясняется:

  1. усил. связи между ионами Са в кристаллической решетке
  2. F связывается с белками органического матрикса
  3. F способствует образ-ю более прочных кристаллов ГАП и F-апатитов
  4. F способствует активизации процесса преципитации апатитов смешанной слюны и тем самым повыш. ее реминерализующую функцию
  5. F влияет на бактерии полости рта, сжигаются кислотообраз.св-ва и тем самым предотврацает сдвиг рн в кислую сторону, т.к. F ингибирует эколазу и подавляет кликолиз. На этом механизме основано противокариесное действие F.
  6. F принимает участие в регуляции поступления Са в твердые ткани зуба, сниж.проницаемость эмали для других субстратов и повыш кариесорезистентность.
  7. F стимулирует репаративные процессы при переломах костей.
  8. F снижает сод-е радиоактивного стронция в костях и зубая и уменьш тяжесть Str рахита. Sr конкурирует с Са за включение в кристаллическую решетку ГАП, а F подавляет эту конкуренцию.

Аскорбиновая кислота. Функция. Роль в метаболизме тканей и органов полости рта

  1. действие витамина связывают с его участием в ОВ-реакциях. Он ускоряет дегидрирование восст. коферментов НАДН и др., активирует окисление глюкозы по ПФП столь характерному для пульпы зуба.
  2. Витамин С влияет на синтез гликогена, который используется в зубах как основной источник энергии в процессе минерализации.
  3. Вит.С актив. многие ферменты углеводного обмена: в гликолизе – гексо…за, фосфофруктокиноза. В ЦГК …гидрогеноза. В тканевом дыхании – цитохромоксидоза, а также ферменты минерализации – щелочной фосфатозы
  4. Вит.С принадлежит непосредственное участие в биосинтезе белка, соед.тк., проколлагена в его превращении в коллаген. В основе этого процесса лежат 2 реакции

пролин - -аксипролин

Ф-т: пролингидроксилаза, коф-т: вит С.

Лизин – оксилизин ф-т: лизингидроксилаза, коф-т: вит.С

Витамин С выполняет другую ф-ю: активация ферментов путем редуцирования дисульфидных мостиков в белках ферментов до сульгидрильных групп. В результате активации щелочной фосфатозы, … дегидрогеназы, цитохромаксидозы.

Дефицит вит.С влияет на состояние пародонта, образование межклеточного вещества в соед.ткани уменьшается

  1. авитаминоз изменяет реактивность тканей зуба. Может вызвать цингу.

Роль лимонной кислоты (цитрата) в процессе минерализации тв.тк.зубаВ тв.тк.зуба организма сод.90% всего цитрата организма. В костях 0,8 – 1,2% от общего числа костей, в дентине 0,8 – 0,9% , эмаль 0,1%, мягкие ткани – 10%.

Основной процесс, в котором обр-ся цитрат, это ЦТК (1-я реакция катализируется цитрат синтезат). Активность этого фермента в костной ткани и зубах выше, чем в других тканях. Синтез цитрата связан с функцией панкреатической и щитовидной желез. Инсулин и пар..гормон активизируют этот процесс.

Цитрат существует в 2 формах:

  1. растворимая, обр-ся в ЦТК, подвергается окислению, пранспорт.ионы Са.
  2. нерастроримая, входит в состав минер.компонентов кости и зуба.

Растворимая форма обладает высокой комплексообразующей способностью, принимает участие в процессе минерализации тканей, соединяясь с Са , образует растворимую транспортную форму Са….

….

….

Образуется растворимая форма цитрата Са. Р активируется пара..гормоном. имеет важное значение в регуляции Са в крови. Обеспечивает поступление Са в минерализованные ткани, а также гомеостаз Са в костях и зубах.

Нерастворимая форма адсорбируется на поверхности кристаллов ГАП и прочно связывается с ними. Белковая часть этого цитрата включается в эмаль и дентин. … наиболее подверженных кариесу. Эта форма цитрата играет роль в патогенезе кариеса, так как цитрат определяет св-ва растворимости и проницаемости эмали.Роль слюны в минерализации и деминерализации тв.тк.зуба, растворимость ГАП

Минерализация – это процесс поступления в эмаль зуба необходимых элементов для образования кристаллов ГАП. Деминерализация - противоспалительный процесс, связанный с растворением кристалла, разрушением эмали. Эти процессы могут находиться в …мическом равновесии и обеспечивать постоянство состава зубов или же может преобладать какой-либо из этих процессов. Главным условием поддержания гомеостаза мин.обмена в зубах явл-ся перенасыщенность слюны ГАП-ом, при гидролизе которых образуется Са и НРО .

Перенасыщенность слюны – это св-во, характерное для всех биологических жидкостей, н-р: пота, спиномозговой жидкости и панкреатическго сока. Все остальные жидкости явл-ся или насыщенными или перенасыщенными ГАП.

Перенасыщенность слюны этими элементами обеспечивает:

  1. диффузию Са и Р в эмали зуба
  2. способность адсорбции этих ионов на поверхности эмали и активация ионного обмена гидратной оболочки кристалла
  3. препятствует растворению эмали. Перенасыщенность слюны сохраняется при рн = 6,0 – 6,2. Это критическое значение рн.

В более кислой среде слюна становится ненасыщенной, т.к. начинается процесс деминерализации эмали и > ее растворимость. При снижении рн от 6 до 5 степень насыщения ГАП снижается в 6,3 раза, а при > рн от 6 до 8 степень насыщения ГАП повышается почти в 100 раз. Активируются процессы минерализации тканей зуба, сниж-ся растворимость тк., образ-ся зубной камень.

Св-во растворимости эмали определяется константой произведения растворимости К(ПР). это величина характеризуется концентрацией и активностью катионов и анионов в слюне при контакте с ГАП. Она зависит от характера ионов К(ПР) зависит от рн слюны. В кислой среде при рн = 4 в слюне будет усиленный гидролиз соли СаН РО х2Н О -> Са и Н РО при рн = 6,0 – 6,2. К(ПР) определяется концентрацией ионов Са и НРО , поэтому соль будет гидролизоваться.

Са(НРО ) х Н О, кот.идут на образование кристаллов ГАП, т.е. преобладает процесс минерализации. Расворимость эмали будет снижаться. Значит, перенасыщенность эмали ГАП явл-ся защитным механизмом, уравновешивающим процессы минерализации и деминерализации, что обеспечивает постоянство состава и структуры минерализ.тканей.

Современные представления о минерализации твердых тканей зуба

2 этапа

  1. образование органич.матрикса
  2. обызвествление этого матрикса.
Оба процесса требуют большой затраты тепла, участия специфич ферментов, белков, ионов Са и Р, регулируется гормоном и витаминами, образовавшейся органич. матрикс обладает ферментат.активностью. Есть спец.ферменты, которые активируют процессы осаждения мин.в-в на органическом матриксе, относится щелочная фосфатоза. Она обладает свойством освобождать неорганический фосфат из орган.соединений. Этот Р взаимодействует с Са, образуется Р – Са соли, которые откладываются там, где действует этот фермент (это гипотеза Робисона). На ее основе солевой состав крови и кости слюны и тв.тк. зуба, нах-ся в равновесии, а фермент – щелочная фосфатоза – вызывает перенасыщение, необходимое для осаждения минер.солей. Данная гипотеза не может объяснить, почему щелочная фосфатоза, которая содержится во всех тканях и жидкостях организма, не способствует минерализации этих тканей.

Доказано, что процесс минерализации ингибируется пирофосфатом, а фермент пирофосфорилаза, расцепляющая пирофосфат, снимает это ингибирование. Пирофорилаза присутствует только в минеральных тканях, поэтому минерализация характерна только для этих тканей, не не характерна для всех остальных тканей, где есть практически все компоненты, необходимые для минерализации, не нет пирофосфорилазыперейти в каталог файлов

Биохимия полости рта

55

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ЧИТИНСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

Учебное пособие

Чита – 2004 г.

Рекомендовано Учебно-методическим объединением по медицинскому и фармацевтическому образованию вузов России в качестве учебного пособия для студентов, обучающихся по специальности 040400 – стоматология (УМО-216 от 13.04.04)

Пособие составлено сотрудниками кафедры биологической химии с курсами биоорганической химии и клинической биохимии ГОУ ВПО Читинской государственной медицинской академии заведующим кафедрой, профессором, д.м.н. Б.С.Хышиктуевым и профессором, д.м.н. Н.А.Хышиктуевой.

Рецензенты: заведующий кафедрой биохимии Московского медицинского стоматологического университета, профессор, д.м.н. Т.П.Вавилова, заведующий кафедрой биохимии Российской медицинской академии последипломного образования, профессор, д.м.н. Г.А.Яровая.

ОГЛАВЛЕНИЕ

Введение

I. Биохимия твердых (минерализованных) тканей зуба

  1. Эмаль

  2. Дентин

  3. Цемент

  4. Пульпа

  5. Пародонт

II. Биохимия жидкостей полости рта, зубной камень и зубной налет

  1. Слюна

  2. Десневая жидкость

  3. Общая характеристика и особенности химического состава зубного налета

  4. Зубной камень

III. Метаболические функции фтора, кальция и фосфора в ротовой полости

IV. Патология: биохимический аспект

  1. Кариес

  2. Флюороз

  3. Пародонтит

Список литературы

ВВЕДЕНИЕ

Гомеостаз полости рта во многом определяется структурно-функциональным состоянием тканей и микроорганизмов ротовой полости. Фундаментальные и прикладные исследования последнего десятилетия в области стоматологии расширили представления о биохимических аспектах твердых тканей зуба, слюны, десневой жидкости, метаболических особенностях жизнедеятельности микроорганизмов и ксенобиотиков в норме и патологии.

В настоящем учебном пособии освещены вопросы биохимии полости рта в физиологических условиях и кратко изложены сведения о биохимических нарушениях, при наиболее часто встречающихся патологических состояниях полости рта. Данное руководство составлено в соответствии с рекомендуемой программой ВУНМЦ МЗ РФ по биологической химии для студентов стоматологического факультета по разделу «Биохимия тканей зуба», «Биохимия ротовой жидкости» и «Метаболические функции фтора». Авторы надеются, что настоящее пособие будет интересно и полезно не только студентам, но и практическим врачам-стоматологам и с благодарностью примут все пожелания и замечания.

I. Биохимия тканей зуба

В составе зуба выделяют минерализованные и неминерализованные ткани. К первым относятся эмаль, дентин и цемент. Вообще в организме человека в норме имеется четыре вида минерализованных тканей: эмаль, дентин, цемент и кость, которые отличаются по химическому составу и происхождению. Последние три происходят из стволовых клеток мезодермы, тогда как эмаль является производным эктодермы. В их химическом составе преобладают неорганические компоненты, а также присутствуют органические соединения и вода (табл.1).

Мягкая (неминерализованная) ткань в составе зуба одна, она называется пульпой и находится в полости коронки и корня зуба.

Таблица 1

Химический состав эмали, дентина и кости (в % от массы)

1.1. ЭМАЛЬ

Эмаль, покрывающая коронку зуба, - самая твердая ткань в организме (сравнимая с алмазом), что объясняется высокой концентрацией в ней неорганических веществ (до 97%), главным образом, кристаллов апатитов: гидроксиапатита (до 75%), карбонатапатита, фторапатита, хлорапатита и др. Здоровая эмаль содержит 0,8-1,0% свободной воды и 1,2% органических соединений, представленных белками, липидами и углеводами. Углеводы эмали в основном представлены глюкозой, маннозой и галактозой. Вода занимает свободное пространство в кристаллической решетке апатитов и органической основе, а также располагается между кристаллами.

Неорганический компонент эмали. Мельчайшими структурными единицами эмали являются кристаллы апатитоподобного вещества, формирующие эмалевые призмы. Минеральную основу составляют кристаллы апатитов и восьмикальциевый фосфат - Са8Н2(РО4)6*5Н2О; формула основного гидроксиапатита - Са10(РО4)6(ОН)2, в этом случае молярное соотношение Са/Р равно около 1,67. Однако, как это установлено в настоящее время, соотношение этих компонентов может изменяться как в сторону уменьшения(1,33), так и в сторону увеличения (2,0). При соотношении Са/Р 1,67 разрушение кристаллов происходит при выходе 2 ионов Са2+, при соотношении 2,0 гидроксиапатит способен противостоять разрушению до замещения 4 ионов Са, тогда как при соотношении 1,33 его структура разрушается. По современным представлениям данный параметр можно использовать для оценки состояния эмали зуба. Гидроксиапатит имеет гексагональную форму (рис. 1). Длинная ось кристаллов-призм расположена по основному направлению давления на кость или зуб. Каждый кристалл покрыт гидратной оболочкой около 1 нм. Связанная вода, образующая эту оболочку, составляет примерно 3,0-3,3% массы эмали. Кроме связанной воды (гидратная оболочка) в эмали имеется свободная вода, располагающаяся в микропространствах. Общий объем воды в эмали составляет 3,8%. Первое упоминание о жидкости, находящейся в твердых тканях зуба, относится к 1928 году. В дальнейшем стали дифференцировать зубную жидкость, которая находится в дентине от эмалевой жидкости, заполняющей микропространства, объем которых составляет 0,1-0,2% от объема эмали. В исследованиях на удаленных зубах человека с использованием специальной методики подогрева показано, что через 2-3 часа после начала опыта на поверхности эмали образуются капельки «эмалевой жидкости». Движение жидкости обусловлено капиллярным механизмом, а по жидкости диффундируют молекулы и ионы. Эмалевая жидкость играет важную биологическую роль не только в период развития эмали, но и в сформированном зубе, обеспечивая ионный обмен.

Рис. 1. Строение молекулы гидроксиапатита

Состояние эмали зуба во многом определяется соотношением Са/Р как элементов, составляющих основу эмали зуба. Это соотношение непостоянно и может изменяться под воздействием ряда факторов. Здоровая эмаль молодых людей имеет более низкий коэффициент Са/Р, чем эмаль зубов взрослых; этот показатель уменьшается также при деминерализации эмали. Более того, возможны существенные различия соотношения Са/Р в пределах одного зуба, что послужило основанием для утверждения о неоднородности структуры эмали зуба, и, следовательно, о неодинаковой подверженности различных участков эмали поражению кариесом. В кристаллической решетке гидроксиапатита имеются вакантные места, поэтому даже в уже сформированном кристалле при химических и физических воздействиях возможныизоморфные замещения. При этом любое проникновение веществ на поверхность или внутрь кристалла связано с преодолением гидратной оболочки. Результатом подобных явлений и образования вакансий является варьирование свойств кристаллов, что выражается в изменении проницаемости эмали, ее резистентности к растворению, адсорбционных свойств. Однако, только некоторые ионы могут включаться в структуру апатитов. Если общую формулу апатита представить как А10В6Х2, то по положению А могут включаться ионы Са2+, Mg2+,Ва2+ , Cr2+, Sr2+ и другие, по положению В - РО43- и другие, по положению Х - НО- , F-, Cl- и другие.

Примером реакции изоморфного замещения является следующая:

Са10(РО4)6(ОН)2 + Mg2+  Са9 Mg(РО4)6(ОН)2 + Са2+

Известно, что приведенное выше взаимодействие является неблагоприятным, так как снижает резистентность эмали к действию кариесогенных факторов.

Замещение в гидроксиапатитах ионов Са на Sr сопровождается формированием стронциевых апатитов - Ca9Sr(РО4)6(ОН)2. При этом стронций, поступая в избыточном количестве, хотя и вытесняет из кристаллической решетки кальций, но сам в ней не удерживается, что приводит к порозности костей. Этот эффект усугубляется недостатком кальция. В результате проводимых как в нашей стране, так и за рубежом, исследований установлено, что микроэлементы в эмали располагаются неравномерно. В наружном слое отмечается большое содержание фтора, свинца, цинка, железа при меньшем содержании в этом слое натрия, магния, карбонатов. Равномерно по слоям распределяются, как правило, стронций, медь, алюминий, калий.

Такие изменения характерны для болезни Кашина-Бека (“уровская болезнь”), которая поражает людей, преимущественно в раннем детстве, живущих в долине реки Уров Читинской и Амурской областей. Страдание начинается с болей в суставах, затем возникает поражение костной ткани, размягчение эпифизов, нарушаются процессы окостенения. В эндемичных районах в почве и воде содержится в 2 раза меньше кальция и в 1,5-2 раза больше стронция, чем в норме. В настоящее время существует и другая теория патогенеза “уровской болезни”, согласно которой патология развивается в результате дисбаланса фосфатов в окружающей среде.

Изоморфное замещение в гидроксиапатите на фтор приводит к образованию гидроксифторапатитов и фторапатитов - Са10(РО4)6F(ОН) и Са10(РО4)6F2:

Са10(РО4)6(ОН)2 + F-  Са10(РО4)6F(ОН) + (ОН)-

Фторапатиты, которых в норме в эмали около 0,66%, обладают значительно большей резистентностью к растворению в кислой среде, чем гидроксиапатиты. Было установлено, что при замещении фтором даже одной из 50 гидроксильных групп растворимость эмали резко понижалась. Именно с этим связано профилактическое действие небольших концентраций фтора. Однако при высоком его содержании образуется фторид кальция - СаF2 - практически нерастворимое соединение, которое быстро исчезает с поверхности зубов в результате выщелачивания:

Са10(РО4)6(ОН)2 + 2F-  10СаF2 + 6(РО4)3- +2(ОН)-

В связи с этим не следует применять высокие концентрации фторидов, особенно в кислых растворах.

В эмали зуба также содержатся хлорапатит - Са10(РО4)6Cl2 (4,4%) и карбонатапатиты - Са10(РО4)5СО3(ОН)2. Они составляют 19% и их количество увеличивается при употреблении пищи, богатой углеводами. Рост концентрации карбонатапатитов грозит снижением резистентности эмали и способствует развитию кариозного процесса.

Большая часть кристаллов гидроксиапатита в эмали ориентирована и упорядочена в виде сложных образований - эмалевых призм. Элементарная ячейка гидроксиапатита (структура 1 порядка) имеет молекулярную массу около 1000, в составе кристалла гидроксиапатита (структура 2 порядка) находится около 2500 таких ячеек (М=2 500 000). Эмалевая призма (структура 3 порядка) в свою очередь составлена из тысяч и миллионов кристаллов. Эмалевые призмы начинаются у эмалево-дентинной границы и идут к поверхности эмали, многократно изгибаясь в виде спирали, которые собраны в пучки (структура 4 порядка).

Органические соединения эмали. В процентах сухой массы они составляют: белки – 0,25-0,45%, липиды – 0,6%, цитраты – 0,1%. Наибольшее количество протеинов содержится в области эмалево-дентинного соединения. Белки эмали нельзя причислить к группе коллагеновых, так как в протеинах эмали нет гидроксипролина, а количество пролина составляет 166-187 аминокислотных остатков на 1000.

В эмали имеются белки, участвующие в амелогенезе - амелогенины и не являющиеся амелогенинами (энамелины). Амелогенин (первая группа белков эмали) представлен 5 соединениями с молекулярной массой 25; 15; 9,5; 7,5 и 6 кДа. Энамелины (вторая группа белков эмали) также являются гетерогенной фракцией и состоят из 5 классов с молекулярной массой, равной 72, 56, 42, 30, 21 кДа. Белки этого семейства способны агрегироваться и дезагрегироваться. Оба класса протеинов относятся к сложным – гликофосфопротеидам, причем амелогенины содержат до 75% органического фосфата, а энамелины – 25%.

Основой формирования и функционального построения эмали служит ее белковая матрица, элементарной функциональной единицей которой является кальций-связывающий белок эмали (КСБЭ). Последний способен к олиго- и полимеризации посредством кальциевых мостиков с образованием трехмерной белковой сетки, нерастворимой в нейтральной среде. Эта структура в дальнейшем выступает в роли центров кристаллизации, обеспечивая упорядоченность и регулярность минерализации, на этапах которой мы подробно остановимся ниже.

По мере созревания меняется белковый профиль эмали. На начальном этапе формирования этой ткани соотношение амелогенинов и энамелинов составляет 9:1, а среди аминокислот превалируют такие как пролин и гистидин; в зрелой наряду с уменьшением количества белка оно становится 1:1 и в аминокислотном составе начинают преобладать аспартат, серин, глицин и аланин.

Изменение белкового состава эмали связано с различием функций, осуществляемых протеинами на разных стадиях формирования зуба: вначале с транспортом и депонированием минеральных компонентов, а затем с инициацией минерализации. Еще в эмали обнаружен уникальный гидроксипролинсодержащий гликофосфопептид с Мr=3 кДа, он прочно связан с гидроксиапатитом и возникает в результате деградации коллагеноподобного белка зуба или попадает в процессе выделения его из дентина.

Третья группа белков эмали – это растворимые белки с Мr 20 кДа. Однако они не обладают сродством к минеральной фазе, не способны к образованию комплексов с кальцием и имеют менее регулярную структуру. Роль этих белков в эмали и в процессе минерализации неясна. Вполне вероятно, что они являются остаточными белками “эмалевого органа”.

Процессы минерализации. До восьмого месяца развития плода происходит формирование зачатка зуба, а к моменту рождения ребенка образуется зрелая эмаль.

Начало минерализации совпадает с разрушением полипептидов эмалевого матрикса.

I этап – протеолиз высокомолекулярных белков до низкомолекулярных с помощью катепсинов (тканевых протеаз) и плазмина.

II этап – обогащение матрикса ионами кальция и неорганическим фосфатом. Источником первого является преимущественно цитрат (см. ниже), а второй поступает за счет активации щелочной фосфатазы, которая гидролизует органические эфиры фосфорной кислоты.

III этап – фосфорилирование остатков серина в низкомолекулярных белках в результате действия протеинкиназы (рис. 2).

IV этап – с фосфорилированными остатками серина реагируют ионы кальция и неорганического фосфата (рис. 2). В конечном итоге формируется первичная ячейка гидроксиапатита (первичный кристалл).

Рис. 2. Схема некоторых этапов минерализации.

Дальнейшее формирование решетки протекает по типу эпитаксии, представляющей собой рост последующих кристаллов на базе предыдущего. При этом вновь образующиеся кристаллы ориентированы по первичному и не связаны с белком.

Наличие большого количества глутамата и аспартата в эмалевых белках и других протеинах минерализованных тканей позволяет присоединять кальций непосредственно к карбоксильной группе этих аминокислот. Кроме того, лизин коллагена способен также взаимодействовать с неорганическим фосфатом путем образования фосфамидной связи (рис.3). В костной ткани преципитация кальция и фосфата возможна не только на белках, но и на углеводах и липидах.

Амелогенез во многом определяется белковой матрицей. Ингибирование протеолиза, согласно гипотезы Robinson и Kirkham (1984), способствует сохранению белка и нарушает амелогенез, что может быть причиной гипоплазии эмали и флюороза.

После прорезывания зубов процесс созревания эмали продолжается и он тесно связан с поступлением минеральных компонентов через приобретенную пелликулу зуба из смешанной слюны.

Рис. 3. Возможные варианты формирования первичного кристалла.

С возрастом происходит накопление Са2+ в поверхностном слое эмали, при этом меняется соотношение Са/Р с 1,51 до 1,86. Это процесс динамичный и зависит от анатомической принадлежности зуба, места его расположения, топографии участка зуба и других факторов. Так, наиболее быстро созревает эмаль в области режущих краев и бугров (в течение 4-6 месяцев после прорезывания). От степени созревания эмали в определенной мере зависит кариесрезистентность зубов.

Регуляция процессов минерализации. Для минерализации костей, твердых тканей зуба необходимо поддержание определенных концентраций ионов кальция и неорганического фосфата в плазме крови, слюне и надкостнице. В организме взрослого человека содержится в среднем 1000 г кальция. Основным его депо в организме (99%) являются кости. В костях около 99% кальция присутствует в виде малорастворимой формы кристаллов гидроксиапатита. Другой фонд кальция – это кальций плазмы крови. В плазму крови кальций поступает из кишечника (с водой и пищей) и из костной ткани (в прцессе резорбции). Нормальное протекание процессов минерализации обеспечивается тем, что концентрация Са2+ в крови варьирует в очень узких пределах (2,12-2,60 ммоль/л – у взрослых; 2,74-3,24 ммоль/л – у детей), более широкие колебания характерны для цифр неорганического фосфата (0,64-1,29 ммоль/л – у взрослых; 1,29-2,26 ммоль/л – у детей). В механизм регуляции гомеостаза этих ионов включены три гормона – паратироидный (паратгормон), кальцитонин и кальцитриолы (1,25(ОН)2D3 и 24,25(ОН)2D3).

Паратироидный гормон (ПТГ) продуцируется околощитовидными железами и по механизму действия является антагонистом тирокальцитонина. Паратгормон – это полипептид, состоящий из 84 аминокислотных остатков, синтезируется в виде препрогормона (115 аминокислот). От последнего в результате частичного гидролиза в эндоплазматической сети отщепляется 25 аминокислотных остатков и образуется прогормон; далее в комплексе Гольджи от него отщепляется гексапептид и образуется активный гормон. Паратгормон упаковывается и хранится в секреторных гранулах (везикулах). В крови он транспортируется в связанном с белком состоянии. Основной стимул секреции данного гормона – низкий уровень Са2+ во внеклеточной жидкости (менее 2,0 ммоль/л). Вид рецепции данного гормона трансмембранный, через ц-3`,5`-АМФ. Органы-мишени: костная ткань, почки и кишечник. В клетках почек и костной ткани локализованы специфические рецепторы, которые взаимодействуют с паратгормоном, в результате чего инициируется каскад событий, приводящий к активации аденилатциклазы. Внутри клеток органов мишеней возрастает концентрация молекул цАМФ, действие которых стимулирует мобилизацию ионов кальция из внутриклеточных запасов. Ионы кальция активируют киназы, которые фосфорилируют особые белки, индуцирующие транскрипцию специфических генов.

Биологические эффекты. В костной ткани рецепторы ПТГ локализованы на остеобластах и остеоцитах, но не обнаружены на остеокластах. При связывании паратгормона с рецепторами клеток-мишеней остеобласты начинают усиленно секретировать инсулиноподобный фактор роста 1 и цитокины. Эти вещества стимулируют метаболическую активность остеокластов. В частности, ускоряется образование ферментов, таких как щелочная фосфатаза и коллагеназа, которые воздействуют на компоненты костного матрикса, вызывают его распад, в результате чего происходит мобилизация Са и фосфатов из кости во внеклеточную жидкость.

В почках ПТГ стимулирует реабсорбцию кальция в дистальных извитых канальцах и тем самым снижает экскрецию кальция с мочой, уменьшает реабсорбцию фосфатов.

Кроме того, паратгормон способствует гидроксилированию 25-гидроксихолекаль-циферола в кальцитриол (1,25 (ОН)2D3). Последний усиливает всасывание Са в кишечнике.

Таким образом, паратгормон восстанавливает нормальный уровень ионов Са во внеклеточной жидкости как путем прямого воздействия на кости и почки, так и действуя опосредованно (через стимуляцию синтеза кальцитриола) на слизистую оболочку кишечника, увеличивая в этом случае эффективность всасывания Са. Снижая реабсорбцию фосфатов из почек, паратгормон способствует уменьшению концентрации фосфатов во внеклеточной жидкости.

Кальцитриолы (1,25(ОН)2D3 и 24,25(ОН)2D3) оказывают воздействие на тонкий кишечник, кости и почки. Подобно другим стероидным гормонам, витамин D связывается с внутриклеточным рецептором клетки-мишени. Образуется комплекс гормон-рецептор, который взаимодействует с хроматином и индуцирует транскрипцию структурных генов, в результате чего синтезируются белки, опосредующие действие кальцитриола.

Так, в клетках кишечника кальцитриол индуцирует синтез Са-переносящих белков, которые обеспечивают всасывание ионов кальция и фосфатов из полости кишечника в эпителиальные клетки кишечника и далее транспорт из клетки в кровь, благодаря чему концентрация ионов кальция во внеклеточной жидкости поддерживается на уровне, необходимом для минерализации органического матрикса костной ткани.

В почках кальцитриол стимулирует реабсорбцию ионов кальция и фосфатов. При недостатке витамина D нарушается образование аморфного фосфата кальция и кристаллов гидроксиапатитов в органическом матриксе костной ткани, что приводит к развитию рахита и остеомаляции. Обнаружено также, что при низкой концентрации ионов Са кальцитриол способствует мобилизации кальция из костной ткани. Кальцитриол способен также усиливать действие паратгормона на реабсорбцию кальция в почках.

Кальцитонин - полипептид, состоящий из 32 аминокислотных остатков с одной дисульфидной связью. Гормон секретируется парафолликулярными К-клетками щитовидной железы или С-клетками паращитовидных желез в виде высокомолекулярного белка-предшественника. Секреция кальцитонина возрастает при увеличении концентрации Са и уменьшается при снижении концентрации Са в крови. Кальцитонин – функциональный антагонист паратгормона. Он ингибирует (через ц-3,5-АМФ) высвобождение Са из кости, снижая активность остеокластов. Кроме того, кальцитонин подавляет канальцевую реабсорбцию ионов кальция в почках, тем самым стимулируя их экскрецию почками с мочой. Скорость секреции кальцитонина у женщин сильно зависит от уровня эстрогенов. При недостатке эстрогенов секреция кальцитонина снижается. Это вызывает ускорение мобилизации кальция из костной ткани, что приводит к развитию остеопороза.

Паротин – гормон белковой природы с молекулярной массой 100 кДа, вырабатывается в околоушных слюнных железах. Впервые выделен из бычьих околоушных желез. Белки, сходные с паротином, выделены также из подчелюстных слюнных желез (S-паротин), слюны (паротин А, В и С), крови, мочи. Все эти соединения способствуют развитию и росту мезенхимальных тканей, усиливают пролиферацию и кальцинацию дентина зуба. Паротин снижает содержание кальция в крови за счет стимуляции его поступления в ткани зуба, наряду с фосфатом и натрием.

В регуляции роста кости то или иное участие принимают почти все другие гормоны, медиаторы и модуляторы. Простагландины, особенно ПГЕ1, снижают фосфатуритическую реакцию клеток почечных канальцев на паратгормон. Глюкокортикоиды необходимы для роста костей. В физиологических концентрациях они стимулируют обмен веществ в костной ткани, повышая чувствительность клеток к паратгормону и кальцитриолам. Инсулин активирует остеобласты и всасывание кальция в кишечнике. Поэтому при сахарном диабете I типа нарушается рост скелета и минерализация костей. Йодтиронины (Т3 и Т4) также необходимы для нормального роста костей. При их избытке активируются остеокласты и возникает гиперкальцемия. Эстрогены и андрогены принимают участие в механизмах бурного роста в пубертатном периоде. В детстве и в период полового созревания они обеспечивают преобладание процессов костеобразования над резорбцией.

Процессы минерализации находятся также под контролем некоторых витаминов.

Витамин С способствует созреванию коллагена через образование гидроксипролина. Зрелый протеин способен связывать ионы кальция и фосфатов, формируя кристаллы гидроксиапатита. Витамин А влияет на скорость биосинтеза гликозаминогликанов – одного из органических компонентов дентина и цемента. Из холестерола в коже под воздействием ультрафиолетовых лучей синтезируется провитамин D (кальцитриол).

Функции эмали зуба. Эмаль – это бессосудистая и самая твердая ткань организма. Кроме того, эмаль остается относительно неизменной в течение всей жизни человека. Указанные свойства объясняются функцией, которую она выполняет – защищает дентин и пульпу от внешних механических, химических и температурных раздражителей. Только благодаря этому зубы выполняют свое назначение – откусывают и измельчают пищу. Структурные особенности эмали приобретены в процессе филогенеза.

Явление проницаемости эмали зуба осуществляется благодаря омыванию эмали снаружи ротовой жидкостью, а со стороны пульпы – тканевой и наличию пространств в эмали, заполненных жидкостью. Возможность проникновения в эмаль воды и некоторых ионов известна с конца прошлого и начала нынешнего столетия. Так, C.F.Bedecker (1996) утверждал, что зубная лимфа может проходить через эмаль, нейтрализуя молочную кислоту и постепенно увеличивая плотность за счет содержащихся в ней минеральных солей.

В настоящее время проницаемость эмали изучена довольно подробно, что позволило пересмотреть ряд ранее существовавших представлений. Если считалось, что вещества в эмаль поступают по пути: пульпа – дентин – эмаль, то в настоящее время не только установлена возможность поступления веществ в эмаль из слюны, но и доказано, что этот путь является основным. Эмаль проницаема в обоих направлениях: от поверхности эмали к дентину и пульпе и от пульпы к дентину и поверхности эмали. На этом основании эмаль зуба считают полупроницаемой мембраной. Некоторые авторы считают, что проницаемость – это главный фактор созревания эмали зубов после прорезывания.

studfiles.net

Лекция №1 Биохимия твердых тканей зуба

БИОХИМИЯ ПОЛОСТИ РТА

 

Лекция № 1

Биохимия твердых тканей зуба.

К таким тканям относятся эмаль, дентин, цемент зуба. Эти ткани отличаются друг от друга различным происхождением в онтогенезе. Поэтому отличаются по химическому строению и составу. А также по характеру метаболизма. В них эмаль – эптодермального происхождения, а кость, цемент, дентин – мезентимального происхождения, но, несмотря на это, все эти ткани имеют много общего, состоят из межклеточного вещества или матрицы, имеющего углеводно-белковую природу и большое количество минеральных веществ, в основном, представленных кристаллами апатитов.

Степень минерализации: Эмаль –> дентин –> цемент –> кость.

В этих тканях следующее процентное содержание:

  Минеральн. вещ. Органич. вещ. Вода
Эмаль 95% 1 – 1,5% 4%
Дентин 70% 20% 10%
Цемент 50% 27% 13%
Кость 45% 30% 25%
Эти кристаллы имеют гексогенальную форму.

Минеральные компоненты эмали Они представлены в виде соединений, имеющих кристаллическую решетку A (BO) K A = Ca, Ba, кадмий, стронций В = РО, Si, As, CO.

K = OH, Br, J, Cl.

1) гидроксиапатит – Са (РО) (ОН) в эмали зуба 75% ГАП – самый распространенный в минерализованных тканях 2) карбонатный апатит – КАП – 19% Са (РО) СО – мягкий, легко растворимый в слабых кислотах, целочах, легко разрушается 3) хлорапатит Са (РО) Сl 4,4% мягкий 4) стронцевый апатит (САП) Са Sr (PO) - 0,9% не распространен в минеральных тканях и распространен в неживой природе.

Мин. в-ва 1 – 2% в неапатитной форме, в виде фосфорнокислого Са, дикальциферата, ортокальцифосфата. Соотношение Са / Р – 1,67 соответствует идеальному соотношению, но ионы Са могут замещаться на близкие по свойству химические элементы Ва, Сr, Mg. При этом снижается соотношение Са к Р, оно уменьшается до 1,33%, изменяются свойства этого апатита, уменьшается резистентность эмали к неблагоприятным условиям. В результате замещения гидроксильных групп на фтор, образуется фторапатит, который превосходит и по прочности и по кислотоустойчивости ГАП.

Са (РО) (ОН) + F = Ca (PO) FOH гидроксифторапатит Са (РО) (ОН) + 2F = Ca (PO) F фторапатит Са (РО) (ОН) + 20F = 10CaF + 6PO + 2OH фторид Са.

СаF - он прочный, твердый, легко выщелачивается. Если рн сдвигается в щелочную сторону, происходит разрушение эмали зуба, крапчатость эмали, флюороз.

Стронцевый апатит – в костях и зубах животных и людей, живущих в регионах с повышенным содержанием радиоактивного стронция, они обладают повышенной хрупкостью. Кости и зубы становятся ломкими, развивается стронцевый рахит, беспричинный, множественный перелом костей. В отличие от обычного рахита, стронцевый не лечится витамином Д.

Особенности строения кристалла Наиболее типичной является гексогенальная форма ГАП, но может быть кристаллы с палочковидной, игольчатой, ромбовидной. Все они упорядочены, определенной формы, имеют упорядоченные эмаль. призмы – явл-ся структурной единицей эмали.

4 структуры: кристалл состоит из элементарных единиц или ячеек, таких ячеек может быть до 2 тысяч. Мол. масса = 1000. Ячейка – это структура 1 порядка, сам кристалл имеет Mr = 2 000 000, он имеет 2 000 ячеек. Кристалл – структура 2 порядка.

Эмалевые призмы являются структурой 3 порядка. В свою очередь, эм. призмы собраны в пучки, это структура 4 порядка, вокруг каждого кристалла находится гидратная оболочка, любое приникновение веществ на поверхность или внутрь кристалла связано в этой гидратной оболочкой.

Она представляет собой слой воды, связанной с кристаллом, в котором происходит ионный обмен, он обеспечивает постоянство состава эмали, называется эмалевой лимфой.

Вода внутрикристаллическая, от нее зависят физиологические свойства эмали и некоторые химические свойства, растворимость, проницаемость.

Вид: вода, связанная с белками эмали. В структуре ГАП соотношение Са / Р – 1,67. Но встречаются ГАП, в которых это соотношение колеблется от 1,33 до 2.

Ионы Са в ГАПе могут быть замещены на близкие по свойствам в Са другие хим. эл-ты. Это Ba, Mg, Sr, реже Na, K, Mg, Zn, ион H O. Такие замещения называются изоморфными, в тезультате соотношение Са / Р падает. Таким образом, образуется из ГАП – ГФА.

Фосфаты могут заместиться на ион РО НРО цитрат.

Гидрокситы замещаются на Cl, Br, F, J.

Такие изоморфные зам-я приводят к тому, что изменяется и св-во апатитов – резистентность эмали к кислотам и к кариесу падает.

Существуют другие причины изменения состава ГАП, наличие вакантных мест в кристалл. решетке, которые должны быть замещены с одним из ионов, возникают вакантные места чаще всего при действии кислот, уже в сформированном присталле ГАП, образование вакантных мест приводит к изменению св-в эмали, проницаемости, раствопимости, адсорб. св-ва.

Нарушается равновесие между процессом де- и реминерализации. Возникают оптим. усл-я для хим. реакций на поверхности эмали.

Физико-химические св-ва кристалла апатита Одним из важнейших вс-в кристалла явл-ся заряд. Если в кристалле ГАП 10 ост. Са, тогда считают 2 х 10 = 3 х 6 + 1 х 2 = 20 + 20 = 0.

ГАП электонейтрален, если в структуре ГАП содер-ся 8 ионов Са – Са (РО) , то 2 х 8 20 = 16

Стадии проникновения в-в в кристал. ГАП 3 стадии 1) ионный обмен между раствором, который омывает кристалл – это слюна и зубдесневая жидкость с его гдратной оболочкой. В нее поступают ионы, нейтрализующие заряд кристалла Са, Sr, Co, PО, цитрат. Одни ионы могут накапливаться и также легко покидать, не проникая внутрь кристалла – это ионы К и Cl, другие ионы проникают в поверхностный слой кристалла – это ионы Na и F. Стадия происходит быстро в течение неск. минут.

2) это ионный обмен между гидратной оболочкой и поверхностью кристалла, происходит отрыв иона от пов-сти кристалла и замена их на др. ионы из гидратной оболочки. В результате уменьшается или нейтрал-ся поверхн. заряд кристалла и он приобретает устойчивость. Более длительная, чем 1 стадия. В течение неск. часов. Проникают Ca, F, Co, Sr, Na, P.

3) Проникновение ионов с поверхности внутрь кристалла – называется внутрикристаллический обмен, происходит очень медленно и по мере проникновения иона скорость этой стадии замедляется. Такой способностью обладают ионы Ра, F, Са, Sr.

Наличие вакантных мест в кристалл. решетке явл-ся важным фактором в активации изоморфных замещений внутри кристалла. Проникновение ионов в кристалл зависит от R иона и уровня Е, которой он обладает, поэтому легче проникают ионы Н, и близкие по строению к иону Н. Стадия протекает дни, недели, месяцы. Состав кристалла ГАП и свойства их постоянно изменяются и зависят от ионного состава жидкости, которая омывает кристалл и состава гидратной оболочки. Эти св-ва кристаллов позволяют целенаправленно изменять состав твердых тканей зуба, под действием реминерализующих растворов с целью профилактики или лечения кариеса.

Органические в-ва эмали Доля орг. в-в 1 – 1,5%. В незрелой эмали до 20%. Орг. в-ва эмали влияют на биохимические и физические процессы, происходящие в эмали зуба. Орг. в-ва нах-ся между кристаллами апатита в виде пучков, пластинок или спирали. Осн. представители – белки, углеводы, липиды, озотсодержащие в-ва (мочевина, пептиды, цикл. АМФ, цикл. аминокислоты) .

Белки и углеводы входят в состав органич. матрицы. Все процессы реминерализации происходят на основе белковой матрицы. Большая часть представлена коллагеновыми белками. Они обладают способностью инициировать реминерализацию.

1. а) белки эмали – нерастворимы в кислотах, 0,9% ЭДТА. Они относятся к коллаген- и керамидоподобным белкам с большим количеством сер, оксипролина, гли, лиз. Эти белки играют защитную ф-цию в процессе деминерализации. Не случайно в очаге деминерализации на ст. белого или пигментированного пятна кол-во этих белков > в 4 раза. Поэтому кариозное пятно в течение нескольних лет не превращается в кариозную полость, а иногда вообще не развивается кариес. У пожилых людей к кариесу > резистентность. б) кальцийсвязывающие белки эмали. КСБЭ. Содержат ионы Са в нейтральной и слабощелочной среде и способствуют проникновению Са из слюны в зуб и обратно. На долю белков А и Б приходится 0,9% от общей массы эмали.

2. Б. растворимые в воде не связанные с минеральными в-вами. Они не обладают сродством к минер. компонентам эмали, не могут образовывать комплексы. Таких белков 0,3%.

3. Своб. пептиды и отд. аминокислоты, такие как промин, гли, вал, оксипролин, сер. До 0,1% 1) ф-я защитная. Белки окружают кристалл. Предупреждают процесс деминерализации 2) белки инициируют минерализацию. Активно участвуют в этом процессе 3) обеспечивают минер. обмен в эмали и др. твердых тканях зуба.

Углеводы представлены полисахаридами: глюкоза, галактоза, фруктоза, гликоген. Дисахариды нах-ся в свободной форме, а образуются белковые комплексы – фосфо-гликопротеиды.

Липидов очень мало. Представлены в виде гликофосфолипидов. При образовании матрицы они выполняют роль связующих мостиков между белками и минералами.

Дентин уступает по твердости. Наиболее важными элементами дентина являются ионы Са, РО, Со, Мg, F. Mg сод-ся в 3 раза больше, чем в эмали. Концентрация Na и Cl возрастает во внутренних слоях дентина.

Основное в-во дентина состоит из ГАП. Но в отличие от эмали, дентин пронизан большим количеством дентинных канальцев. Болевые ощущения передаются по нервным рецепторам. В дентинных канальцах нах-ся отростки клеток одонтобластов, пульпа и дентинная жидкость. Дентин составляет основную массу зуба, но явл. менее минерализов. в-вом, чем эмаль, по строению напоминает грубоволокнистую кость, но более твердый.

Органич. в-ва Белки, липиды, углеводы, ….

Белковый матрикс дентина - 20% от общей массы дентина. Состоит из коллагена, на его долю приходится 35% всех органических в-в дентина. Это свойство характерно для тканей лизин…мального происхождения, сод. глюкозаминогликогены (……. атинсульфат) , галактозу, гексазамиты и гелиуроновая кислоты. Дентин богат активными регуляторными белками, которые регулируют процесс реминерализации. К таким спец. белкам отн-ся амелогенины, энамелины, фосфопротеиды. Для дентина, как и для эмали, характерен заледленный обмен мин. компонентов, что имеет большое значение для сохранения стабильности тканей в условиях повышенного риска деминерализации, стресса.

Цемент зуба Покрывает тонким слоем весь зуб. Первичный цемент образован минеральным в-вом, в котором в разных направлениях проходят коллагеновые волокна, клеточные элементы – цементобласты. Цемент зрелого зуба мало обновляется. Состав: минер. компоненты в основном представлены карбонатами и фосфатами Са. Цемент не имеет как эмаль и дентин, собственных кровеносных сосудов. В верхушке зуба – клеточный цемент, основная часть – бесклеточный цемент. Клеточный напоминает кость, а бесклеточный состоит из колл. волокон и аморфного в-ва, склеивающего эти волокна.

Пульпа зуба. Лекция № 2

Это рыхлая соединит. ткань зуба, заполняющая коронковую полость и корневой канал зуба с большим количеством нервов и кровеносных сосудов, в пульпе есть коллагеновые, но нет эластических волокон, есть клеточные элементы, представленные одонтобластами, макрофагами и фибробластами. Пульпа является биологическим барьером защищающим зуб. полость и периодонт от инфекции, выполняет пластическую и трофическую функцию. Характеризуется повыш-ой активностью окислительно-восстановит. процессов, а поэтому высоким потреблением О. Регуляция энергетического баланса пульпы осуществяется путем сопряжения окисления с фосфорилированием. О высоком уровне биологич. процессов в пульпе говорят наличие таких процессов, как ПФП, синтез РНК, белков, поэтому пульпа богата ферментами, осуществляющими эти процессы, но особенно свойственен для пульпы углеводный обмен. Есть ферменты гликолиза, ЦТК, водно-минерального обмена (щелочн. и кислая фосфотозы) , трансаминазы, аминопептидазы.

В результате этих процессов обмена обр-ся множество промежуточных продуктов, которые поступают из пульпы в твердые ткани зуба. Все это обеспечивает высокий уровень …., реакт-и и защитн. мех-ов.

При патологии активность этих ферментов повышается. При кариесе происходят деструктивные изменения в одонтобластах, разрушение коллагеновых волоккон, появл-ся кровоизлияния, изменяется активность ферментов, обмен в-в в пульпе.

Пути поступления в-в в твердые ткани зуба и проницаемость эмали Зуб имеет контакт со смешанной слюной, с другой стороны – …. крови, от их сост-я зависит сост-е твердых тканей зуба. Осн. часть органич. и минер. в-в, которые поступают в эмаль зуба, содержатся в слюне. Слюна действует на эмаль зуба и вызывает набухание или сморщивание коллагеновых барьеров. В результате происходит изменение проницаемости эмали. Вещества слюны обмен-ся с веществами эмали и на этом основаны процессы де- и реминерализации. Эмаль – это полупроницаемая мембрана. Она легко проницаема для Н О, ионов (фосфаты, бикарбонаты, хлориды, фториды, катионы Са, Mg, K, Na, F, Ag и др.) . они и определяют нормальный состав эмали зуба. Проницаемость зависит и от других факторов: от хим. стр-ры в-ва и св-в иона. Размеры апатитов от 0,13 - 0,20 нм, расстояние между ними 0,25 нм. Любые ионы должны проникать через эмаль, но определить проницаемость с т. зр. Мr или размеров ионов нельзя, имеют место другие св-ва сродство иона к гидроксиапатиту эмали.

Основной путь поступления в-в в эмаль – простая и облегченная диффузия.

Проницаемость эмали зависит от: 1) размеров микропространств, заполн. Н О в структуре эмали 2) размера иона или размера молекулы в-ва 3) способности этих ионов или молекул связываться с компонентами эмали.

Н-р, ион F (0,13 нм) легко проникает в эмаль и связывается с элементами эмали в нарушенном слое эмали, поэтому не проникает в глубокие слои. Са (0,18 нм) – адсорбируется на поверхности кристаллов эмали, а также легко входит в кристаллич. решетку, поэтому Са откладывается как в поверхностном слое, так и диффунгицирует внутри. J легко проникают в микропространство эмали, но не способны связываться с кристаллами ГАП, поступают в дентин, пульпу, затем в кровь и депонируются в щитовидной железе и надпочечниках.

Проницаемость эмали снижается под действием химич. Факторов: KCl, KNO, фтористых соединений. F взаимодействует с кристаллами ГАП, создает барьер для глубокого проникновения многих ионов и в-в. Св-ва прон-и зависят от состава смешанной слюны. Так, инта.. ая слюна по-разному действует на проницаемость эмали. Это связывают с действием ферментов, которые есть в слюне. Н-р, гиалуронидоза > проницаемость Са и глицина, особенно в области кариезного пятна. Хемотрипсин и целочная фосфатоза проницаемость для всех ионов и в-в.

Доказано, что в эмаль зуба проникают амино-кислоты (лизин, глицин) , глюкоза, фруктоза, галактоза, мочевина, никотинамид, вит, гормоны.

Проницаемость зависит от возраста человека: самая большая – после прорезывания зуба, она снижается к моменту созревания тканей зуба и продолжает снижаться с возрастом. От 25 до 28 лет > резистентность к кариесу, происходит сложный обмен при сохранении постоянства состава эмали.

РН слюны, а также снижение рн под зубным налетом, где образуются органические кислоты, проницаемость увеличивается вследствие активации деминерализации эмали кислотами.

Кариес > проницаемость. На стадии белого и пигментированного пятна > проницаемость, > возможность проникновения различных ионов и в-в, а также Са и фосфатов – это компенсаторные реакции в ответ на актив-ю деминерализации. Не каждое кариозное пятно превращается в кариозную полость, кариес разв-ся в течение очень длительного времени …. ….

Гипосаливация приводит к разрушению эмали. Кариес, который возникает ночью – это ночная болезнь.

Поверхностные образования на зубах Это муцин, кутикула, пеликула, зубной налет, камень.

Муцин – сложный белок, отн-ся к гликопротеидам слюны, который покрывает поверхность зуба и выполняет защ. ф-ю, защищает от механических и химических воздействий, его защитная роль объясняется особенностями, спецификой аминокислотного состава и особенностями содерж-ся сер, трианин, в которых содержатся до 200 аминокислот, про… К остаткам сер и трианина присоединяется за счет О-гликозидной связи. Остатки N-ацетилнейраминов. к-ты, N-ацетилглюкозамина, галактозы и ф.. зы. Белок напоминает по строению гребенку, у которой имеется … белков, остатки состоящих из аминокислот, а углеводные компоненты расположены белковыми цепями, они соединяются друг с другом дисульфидными мостиками и обр-ся крупные молекулы, способные удерживать Н О. Они образуют гель.

Кутикула Образуется перед прорезыванием зубов, состоит из … клеток, после проредвания исчезает.

Пелликула Это тонкая, прозрачная пленка, углеводно-белковой природы. Влюч. глицин, гликопротеиды, с.. аловые к-ты, отд. аминок-ты (ала, глу) , Jg, A, G, M, аминосахара, которые обр-ся в результате жизнедеятельности бактерий. В строении обнаруживается 3 слоя: 2 на поверхности эмали, а третий – в поверхностном слое эмали. Пелликула покрывает зубной налет.

Зубной налет Белая мягкая пленка, наход-ся в области шейки и на всей поверхности. Удаляется во время чистки и жесткой пищей. Это кариесогенный фактор. Представляет деструктивное орган. в-во с большим кол-вом../о, которые нах-ся в полости рта, а также продуктов их жизнедеятельности. В 1 г зубного налета сод-ся 500 х 10 микроб. клеток (стрептококки) . Различают ранний зубной налет (в течение первых суток) , зрелый зубной налет (от 3 до 7 суток) .

3 гипотезы образования зубного налета 1) … 2) преципитация гликопротеидов слюны, которые а…ируют в бактериях 3) приципитация внутриклеточных полисахаридов. Образуются стрептококками, наз-ся декстран и леван. Если центрифугировать зубной налет и пропустить его через фильтр, то выделяется 2 фракции, клеточная и бесклеточная. Клеточная – эпителиальные клетки, стрептококки, (15%) . …. ты, дифтероиды, стафиллококки, дрожжеподобные грибы – 75%.

В зубном налете 20% - сухого в-ва, 80% - Н О. В сухом в-ве есть минер. в-ва, белки, улеводы, липиды. Из минер. в-в: Са – 5 мкгр/в 1 г сухого в-ва зубного налета. Р – 8,3, Na – 1,3, К – 4,2. Есть микроэлементы Са, Str, Fe, Mg, F, Se. F сод. в зубном налете в трех формах: 1) CaF - фторид Ca 1) комплекс белка CF 2) F в строении М/О Одни микроэлементы снижают восприимчивость зубов к кариесу F, Mg, другие снижают устойчивость к кариесу – Se, Si. Белки из сухого налета – 80%. Белковый и аминокислотный состав неидентичен таковым смешан. слюны. По мере созревания аминокислот они изменяются. Исчезает гли, арг, лиз, > глутомата. Углеводов 14% - фруктоза, глюкоза, гексозамины, с.. аловые кислоты и кисл., и глюкозаминами.

При участии ферментов бактерий зубного налета, из глюкозы синтезируются полимеры – декстран, из фруктозы - леван. Они и составляют основу органич. матрицы зубного налета. Участвующие в пре…ции микроорганизмы расщепляющся соответственно декстр.. зной и леванозной кариесогенных бактерий стрептококков. Обр-ся огран. к-ты: мактак, пируват, уксусная, пропионовая, лимонная. Это приводит к снижению под зубным налетом на поверхности эмали рн до 4,0. Это кариесогенные условия. Поэтому зубной налет является одним из важных этиологич. и патогенных звеньев в развитиии кариеса и болезней пародонта.

Липиды В раннем зубном налете – триглицериды, кс, глицерофосфолипиды. В зрелом кол-во

Много гидролитических и протеалитических ферментов. Они действуют на органический матрикс эмали, разрушая его. Отн. гликозидозы. их активность в 10 раз выше, чем в слюне. Кислая, щелочная фосфотазы, РН, ДН –нозы. Пероксидазы.

Метаболизм зубного налета зависит от характера микрофлоры. Если в ней преобладают стрептококки, то рн кристаллический.

Зубной налет минерализуясь, превращается в зубной камень. Особенно с возрастом, при некоторых видах патологии у детей – отложения зубного камня связано с врожденными поражениями сердца, С. Д.

Зубной камень (ЗК) Это патологич. обезвествленное обр-е на поверхности зубов. Различают наддесневой, поддесневой з. к. Отличаются по локализации, химическому составу и по химизму образования.

Хим. состав з. к.

Мин. в-ва 70 – 90% сух. в-ва.

Количество минеральных в-в в з. к. различно. Темный з. к. содержит больше минеральных в-в, чем светлый. Чем > минерализован зк, мем > Mg, Si, Str, Al, Pb. Сначала обр-ся маломинерализованные в-ва зк, которые на 50% состоят из в-ва бруслит Са НРО х 2Н О.

Октокальцийфосфат Са Н (РО) х 5Н О Карбонатные апатиты Са (РО СО) Са (РО) СО (ОН) .

Гидроксиапатит Са (РО) (ОН Виктолит – (Са Мg) (РО) Есть в зк –F содержится в тех же з-х формах, что и в зубном налете.

Белки в зависимости от зрелости зк – от 0,1 – 2,5%. Кол-во белков

Особенность аминокислотного состава - нет циклических аминокислот Липиды ГФЛ – синтезируются микроорганизмами зубного налета. Способны связывать Са с белками а инициировать образование ГАП. Есть в зк АТФ, она является одновременно источником энергии, а также донором фосфороорганич. в-в. при минерализации брулита и преврашении его в ТАП. Брулит превращается в октокальцийфосфат -а ГАП (при рн>8) . Брулит - АТФ —> октокальцийфосфат а ГАП.

Биохимические изменения в твердых тканях зуба при кариесе, профилактика кариеса методом реминерализации Начальные биохимич. изменения возникают на границе между поверхностью эмали и основание зубного камня. Первич. клиническим проявлением явл. появление кариозного пятна (белого или пигментированного) . В этом участке эмали сначала проходят процессы деминерализации, особенно выраженные в подповерхност. слое эмали, а затем происходят изменения в органическом матриксе, что приводит к > проницаемости эмали. Деминерализация происходит только в области кариозного пятна и она связана с увеличением микропространства между кристаллами ГАП, > растворимость эмали в кислой среде, возможны 2 типа реакций в зависимости от кислотности: Ca (PO) (OH) + 8H = 10Ca + 6 HPO + 2 H O Ca (PO) (OH) + 2H = Ca(H O) (PO) (OH) + CA Реакция № 2 приводит к образованию апатита в строении которого имеется вместо 10,9 атомов Са, т.е.

Профилактика и лечение кариеса реминерализующими средствами.

Реминерализация – это частичное изменение или полное восстановление минер. компонентов эмали зуба за счет компонентов слюны или реминерализующих растворов. Реминерализация основана на адсорбции минер. в-в в кариозные участки. Критерием эффективности реминерализующих растворов явл-ся такие св-ва эмали, как проницаемость и ее растворимость, исчезновение или уменьшение кариозного пятна,

Реминерализующие растворы обладают большим эффектом действия, чем смешанная слюна.

В составе слюны Са и Р соединается с органич. комплексами слюны и содержание этих комплексов уменьшается в слюне. Эти р-ры должны содержать F в необходимом количестве, так как он влияет на омоложение Са и Р в твердые ткани зуба и кости. При

Лекция № 3 Гипотеза патогенеза кариеса Существуют несколько гипотез: 1) нервно-трофический кариес рассматривается как результат условий существования человека и воздействия на него факторов внешней среды. Большое значение авторы придавали ЦНС 2) трофическая. Механизм развития кариеса заключается в нарушении трофической роли одонтобластов 3) пелационная теория. Кариес есть результат пелации эмали комплексами смешанной слюны. Кариес – результат одновременного протеолиза орган. в-в и пелации минер в-в эмали 4) ацидогенная или химико-кариозитозная. В основе лежит действие кислореагирующих в-в на эмаль зуба и участие тикроорганизмов в кариозном процессе. Предложена 80 лет назад и лежит в основе современной гипотезы патогенеза кариеса. Кариесобезвествленных тканей, вызыв-ся кислотами, образ. в результате действия микроорганизмов на углеводы.

Кариесогенные факторы делятся на факторы общего и местного характера.

Общего характера: относятся неполноценное питание: избыток углеводов, недостаток Са и Р, дефицит микроэлементов, витаминов, белков и др.

Болезни и сдвиги в функцион. состоянии органов и тканей. Неблагоприятное воздействие в период прорезывания зубов и созревания и в первый год после прорезывания.

Электром. возд-ие (ионизирующая радиация, стрессы) , которые действуют на слюнные железы, выделяемая слюна не соответствует нормальному составу, а она действует на зубы.

Местные факторв: 1) зубной налет и бактерии 2) изменение состава и св-в смешанной слюны (сдвиг рн в кислую сторону, недостаток F, уменьшается количество и соотношение Са и Р и др.) 3) углеводная диета, углеводные пищевые остатки

Противокариесогенные факторы и кариесрезистентность зубов

1) восприимчивость к кариесу зависит от типа минерализации твердых тканей зуба. Желтая эмаль более кариесоустойчивая. С возрастом происходит уплотнение кристаллической решетки и кариесорезистентность зубов увелич.

2) Кариесорезистентности способствует замещение ГАП на фторапатиты – более прочные, более кислотоустойчивые и плохорастворимые. F – это противокариесогенный фактор 3) Кариесрезистентность поверхностного слоя эмали объясняется повышенным содержанием в ней микроэлементов: станум, Zn, Fe, Va, вольфрам и др., а Se, Si, Cd, Mg – явл-ся кариесогенными 4) Кариесорезистентности зубов способствует вит. D, C, A, B и др.

5) Противокариесогенными св-вами обладают смешанная слюна, т.е. ее состав и свойства.

6) Особое значение придается лимонной кислоте, цитрату.

F и стронций F содержится во всех тканях организма. Находятся в нескольких формах: 1) кристалл. форма фторапатита: зубы, кости 2) в комплексе с органич. в-вами гликопротеидами. Образ-ся органический матрикс эмали, дентина, костей 3) 2/3 общего количества F нах-ся в ионном состоянии в биол.

жидкостях: кровь, слюна. Сниж. F в эмали и дентине связано с изменением в пит. Н О.

Легче F включ. в структуру эмали в слабокислой среде, кол-во F в костях увеличивается с возрастом, а в зубах детей обнаруживается в повышенных количествах, в период созревания твердых тканей зуба и сразу после прорезывания.

При очень больших количествах F в организме возникает отравление фторсоединениями. Выражается в повыш-й хрупкости костей и их деформацией из-за нарушения Р-Са-го обмена. Как при рахите, но употребление вит. Д и А не вызывает существенного влияния на нарушение Р-Са обмена.

Большое количество F оказывает токсическое действие на весь организм, вследствие выраженного тормозящего влияния на процессы обмена углеводов, жиров, тканевого дыхания.

Роль F Принимают участие в процессе минерализации зубов и костей. Прочность фторапатитов объясняется: 1) усил. связи между ионами Са в кристаллической решетке 2) F связывается с белками органического матрикса 3) F способствует образ-ю более прочных кристаллов ГАП и F-апатитов 4) F способствует активизации процесса преципитации апатитов смешанной слюны и тем самым повыш. ее реминерализующую функцию 5) F влияет на бактерии полости рта, сжигаются кислотообраз. св-ва и тем самым предотврацает сдвиг рн в кислую сторону, т.к. F ингибирует эколазу и подавляет кликолиз. На этом механизме основано противокариесное действие F.

6) F принимает участие в регуляции поступления Са в твердые ткани зуба, сниж. проницаемость эмали для других субстратов и повыш кариесорезистентность.

7) F стимулирует репаративные процессы при переломах костей.

8) F снижает сод-е радиоактивного стронция в костях и зубая и уменьш тяжесть Str рахита. Sr конкурирует с Са за включение в кристаллическую решетку ГАП, а F подавляет эту конкуренцию.

Аскорбиновая кислота. Функция. Роль в метаболизме тканей и органов полости рта 1) действие витамина связывают с его участием в ОВ-реакциях. Он ускоряет дегидрирование восст. коферментов НАДН и др., активирует окисление глюкозы по ПФП столь характерному для пульпы зуба.

2) Витамин С влияет на синтез гликогена, который используется в зубах как основной источник энергии в процессе минерализации.

3) Вит. С актив. многие ферменты углеводного обмена: в гликолизе – гексо…за, фосфофруктокиноза. В ЦГК …гидрогеноза. В тканевом дыхании – цитохромоксидоза, а также ферменты минерализации – щелочной фосфатозы 4) Вит. С принадлежит непосредственное участие в биосинтезе белка, соед. тк., проколлагена в его превращении в коллаген. В основе этого процесса лежат 2 реакции пролин - -аксипролин Ф-т: пролингидроксилаза, коф-т: вит С.

Лизин – оксилизин ф-т: лизингидроксилаза, коф-т: вит. С Витамин С выполняет другую ф-ю: активация ферментов путем редуцирования дисульфидных мостиков в белках ферментов до сульгидрильных групп. В результате активации щелочной фосфатозы, … дегидрогеназы, цитохромаксидозы.

Дефицит вит. С влияет на состояние пародонта, образование межклеточного вещества в соед. ткани уменьшается 5) авитаминоз изменяет реактивность тканей зуба. Может вызвать цингу.

Роль лимонной кислоты (цитрата) в процессе минерализации тв. тк. зуба В тв. тк. зуба организма сод. 90% всего цитрата организма. В костях 0,8 – 1,2% от общего числа костей, в дентине 0,8 – 0,9%, эмаль 0,1%, мягкие ткани – 10%.

Основной процесс, в котором обр-ся цитрат, это ЦТК (1-я реакция катализируется цитрат синтезат) . Активность этого фермента в костной ткани и зубах выше, чем в других тканях. Синтез цитрата связан с функцией панкреатической и щитовидной желез. Инсулин и пар.. гормон активизируют этот процесс.

Цитрат существует в 2 формах: 1) растворимая, обр-ся в ЦТК, подвергается окислению, пранспорт. ионы Са.

2) нерастроримая, входит в состав минер. компонентов кости и зуба.

Растворимая форма обладает высокой комплексообразующей способностью, принимает участие в процессе минерализации тканей, соединяясь с Са, образует растворимую транспортную форму Са.

Образуется растворимая форма цитрата Са. Р активируется пара.. гормоном. имеет важное значение в регуляции Са в крови. Обеспечивает поступление Са в минерализованные ткани, а также гомеостаз Са в костях и зубах.

Нерастворимая форма адсорбируется на поверхности кристаллов ГАП и прочно связывается с ними. Белковая часть этого цитрата включается в эмаль и дентин. … наиболее подверженных кариесу. Эта форма цитрата играет роль в патогенезе кариеса, так как цитрат определяет св-ва растворимости и проницаемости эмали.

Роль слюны в минерализации и деминерализации тв. тк. зуба, растворимость ГАП Минерализация – это процесс поступления в эмаль зуба необходимых элементов для образования кристаллов ГАП. Деминерализация - противоспалительный процесс, связанный с растворением кристалла, разрушением эмали. Эти процессы могут находиться в …мическом равновесии и обеспечивать постоянство состава зубов или же может преобладать какой-либо из этих процессов. Главным условием поддержания гомеостаза мин. обмена в зубах явл-ся перенасыщенность слюны ГАП-ом, при гидролизе которых образуется Са и НРО.

Перенасыщенность слюны – это св-во, характерное для всех биологических жидкостей, н-р: пота, спиномозговой жидкости и панкреатическго сока. Все остальные жидкости явл-ся или насыщенными или перенасыщенными ГАП.

Перенасыщенность слюны этими элементами обеспечивает: 1) диффузию Са и Р в эмали зуба 2) способность адсорбции этих ионов на поверхности эмали и активация ионного обмена гидратной оболочки кристалла 3) препятствует растворению эмали. Перенасыщенность слюны сохраняется при рн = 6,0 – 6,2. Это критическое значение рн.

В более кислой среде слюна становится ненасыщенной, т.к. начинается процесс деминерализации эмали и > ее растворимость. При снижении рн от 6 до 5 степень насыщения ГАП снижается в 6,3 раза, а при > рн от 6 до 8 степень насыщения ГАП повышается почти в 100 раз. Активируются процессы минерализации тканей зуба, сниж-ся растворимость тк., образ-ся зубной камень.

Св-во растворимости эмали определяется константой произведения растворимости К(ПР) . это величина характеризуется концентрацией и активностью катионов и анионов в слюне при контакте с ГАП. Она зависит от характера ионов К(ПР) зависит от рн слюны. В кислой среде при рн = 4 в слюне будет усиленный гидролиз соли СаН РО х2Н О -> Са и Н РО при рн = 6,0 – 6,2. К(ПР) определяется концентрацией ионов Са и НРО, поэтому соль будет гидролизоваться.

Са(НРО) х Н О, кот. идут на образование кристаллов ГАП, т.е. преобладает процесс минерализации. Расворимость эмали будет снижаться. Значит, перенасыщенность эмали ГАП явл-ся защитным механизмом, уравновешивающим процессы минерализации и деминерализации, что обеспечивает постоянство состава и структуры минерализ. тканей.

Современные представления о минерализации твердых тканей зуба 2 этапа 1) образование органич. матрикса 2) обызвествление этого матрикса.

Оба процесса требуют большой затраты тепла, участия специфич ферментов, белков, ионов Са и Р, регулируется гормоном и витаминами, образовавшейся органич. матрикс обладает ферментат. активностью. Есть спец. ферменты, которые активируют процессы осаждения мин. в-в на органическом матриксе, относится щелочная фосфатоза. Она обладает свойством освобождать неорганический фосфат из орган. соединений. Этот Р взаимодействует с Са, образуется Р – Са соли, которые откладываются там, где действует этот фермент (это гипотеза Робисона) . На ее основе солевой состав крови и кости слюны и тв. тк. зуба, нах-ся в равновесии, а фермент – щелочная фосфатоза – вызывает перенасыщение, необходимое для осаждения минер. солей. Данная гипотеза не может объяснить, почему щелочная фосфатоза, которая содержится во всех тканях и жидкостях организма, не способствует минерализации этих тканей.

Доказано, что процесс минерализации ингибируется пирофосфатом, а фермент пирофосфорилаза, расцепляющая пирофосфат, снимает это ингибирование. Пирофорилаза присутствует только в минеральных тканях, поэтому минерализация характерна только для этих тканей, не не характерна для всех остальных тканей, где есть практически все компоненты, необходимые для минерализации, не нет пирофосфорилазы.

Поделитесь с Вашими друзьями:

zodorov.ru

БХ. Лекция № 1 Биохимия твердых тканей зуба

Лекция № 1

Тема: Биохимия твердых тканей зуба

Обмен веществ в эмали после прорезывания зубов

Эмаль прорезовшихся зубов не содержит нервных окончаний, рецепторов,­ сосудов, клеток, вследствие чего она лишена чувствительности и способности к регенерации в биологическом смысле. Поэтому обменные процессы, протекающие в эмали после прорезывания зубов - это не биологические, а физико-химические процессы ионного обмена, которые обеспечивают определенное соотношение минерализации и деминерализации. Протекание этих физико-химических процессов зави­сит от состава и свойств жидкостей, взаимодействующих с эмалью: ротовой жидкости, пульпарного ликвора. Известно, что минеральные и низкомолекулярные­ органические вещества могут проникать в эмаль из пульпы через дентин (центробежно), а также из ротовой жидкости (центростремительно). До настоящего времени ученые продолжают высказывать различные мнения­ относительно того, которая из этих жидкостей выполняет главную роль в обмене эмали после прорезывания зубов. В основе этих противопо­ложных мнений лежат различные исследовательские факты. С одной сто­роны показано, что после депульпирования зуба может быть слегка увеличены­ деминерализация и проницаемость эмали, изменена ее структура. Другие исследования показывают, что структура, минеральный состав эмали­ после депульпирования зубов, кариесустойчивость эмали остаются без существенных изменений по крайней мере на протяжении многих лет, тогда как ксеростомия приводит к быстрому разрушению эмали. Вероятно, нель­зя целиком отрицать роль пульпы в трофике эмали после прорезывания зубов,­ однако, можно считать, что в значительно большей степени минераль­ный состав и структура эмали зависят от состава и свойств ротовой жидкости.­ Возможность обмена в системе эмаль - ротовая жидкость обусловле­на проницаемостью эмали.

Проницаемость эмали

Проницаемость эмали - это способность эмали пропускать воду и растворенные в ней, минеральные и органические вещества в двух направ­лениях: от поверхности эмали к дентину и наоборот.

Механизмы проницаемости эмали для неорганических ионов и орга­нических веществ, содержащихся в ротовой жидкости, различны.

Проницаемость для неорганических ионов. Эмаль имеет микропро­странства между призмами и внутри призм, заполненные эмалевой жидкостью. Механизм поступления ионов из ротовой жидкости в эмалевую жидкость по градиенту концентрации путем простой диффузии. Скорость и глубина проникновения ионов в эмалевую жидкость зависят от:

  1. градиента концентрации ионов (проникают только те ионы, концентрация которых в ротовой жидкости больше, чем в эмалевой жидкости)

  2. размеров и заряда ионов (однозарядные лучше проникают, чем двухзарядные)

  3. способности ионов связываться с компонентами эмали и входить в кристаллическую решетку ГА (хорошо адсорби­рующиеся - медленно диффундируют в глубокие слои эмали, а плохо взаимодействующие с ГА - быстро диффундируют к пульпе и из нее в кровь).

Проницаемость для органических веществ. Низкомолекулярные орга­нические вещества, такие как аминокислоты, глюкоза проходят через эмаль транзитом в дентин по ламеллам - образованиям органической природы. Такие вещества не участвуют в обмене эмали.

Факторы, влияющие на проницаемость эмали

1. Степень минерализации эмали - содержание в эмали кальция и фос­фора. Чем больше минерализована эмаль, тем меньше ее проницаемость. Это обусловлено тем, что по мере роста кристаллов ГА, увеличения плот­ности укладки кристаллов уменьшается слой эмалевой жидкости, окру­жающий кристаллы. Это создает механическое препятствие для проникно­вения растворимых в воде веществ.

Деминерализация эмали при патологических процессах, например, при определенной стадии развития кариеса, повышает про­ницаемость эмали.

2. Пелликула - органическая пленка на зубах препятствует поступле­нию веществ в эмаль.

3.Наличие дефектов в эмали, например, микротрещины увеличивают проницаемость эмали.

4.Физические факторы (ультразвук, электрофорез) увеличивают про­ницаемость.

События после прохождения ионов в эмалевую жидкость

1.Накопление на поверхности кристаллов ГА. Часть проникающих ионов накапливается в гидратной оболочке, окружающей кристалл ГА. Накопление происходит в течение нескольких минут после входа ионов в эмаль. Накопление обусловлено поверхностным зарядом кристаллов ГА. Заряд возникает вследствиеналичия «дефектов» в кристаллической решет­ке. Теоретически состав ГА выражается формулой Са10(РО4)6(ОН)2, ему соответствует соотношение Са/Р 1,67. Реально это соотношение находится в пределах 1,33 -2,0, то есть на деле состав ГА отличается от теоретического. Так, например, может быть восьмикальциевый апатит. В том месте кристаллической решетки, где присутствует такой апатит имеется отрицательный заряд. [Ca8] 16+[(PO4)6(OH)2]20-

  1. Проникновение ионов в кристалл. Часть накапливающихся ионов могут зайти в гидратную оболочку и выйти из нее. Однако другие ионы способны проникать в поверхность кристалла. Проникновение зависит от природы, размера, величины заряда иона. Проникают, например, такие ионы как Са2+, Sг2+, Мg2+, Ва2+, НРО42- ,F- ,Н+. Проникновение происходит в течение нескольких часов.

  2. Внедрение ионов к кристаллическую решетку ГА (внутрикристаллический обмен). Идет в течение многих месяцев. Внедрение в кристаллическую решетку ГА происходит по принципу компенсации за­ряда двумя путями.

1). Занятие ионом вакантных мест в решетке. Так, например, в восьмикальциевый ГА компенсируя избыток отрицательного заряда может встро­иться ион кальция, магния и другие катионы.

2). Замещение ионом иона кристалла ГА. Замещение может быть гомо- или гетерогенным. При гомогенном замещении, например, Са2+

замещает Са2+. При гетерогенном - катион Са2+ или анионы РО43- , ОН-- кристалла ГА замещаются другими катионами или анионами. Например:

Са10(РО4)6(ОН)2 + Mg2+→ Са9Mg(РО4)6(ОН)2 + Са2+ (1)

Са10(РО4)6(ОН)2 + 2Н+ → Са9Н2(РО4)6(ОН)2 + Са2+ (2)

Са10(РО4)6(ОН)2 + F- → Са10(РО4)6 F(ОН) + OH- (3)

Са10(РО4)6(ОН)2 + 20F- → 10 СаF2 + 6 (РО4)3- + 2OH- (4)

Последствия внедрения ионов в кристаллическую решетку ГА

Внедрение в кристаллическую решетку ГА тех или иных ионов изме­няет или способствует сохранению минеральной структуры эмали. Внедрение катионов кальция и фосфатных анионов сохраняет или упрочивает кристаллическую решетку ГА. Так, известно, что после проре­зывания постоянных зубов происходит так называемое созревание эмали. Созревание эмали заключается в снижении содержания в эмали воды, бел­ков и увеличении содержания минеральных компонентов. Увеличение ми­нерализации эмали после прорезывания зубов обусловлено переходом ее из одной жидкой среды в другую: кровь, внеклеточная жидкость (ВКЖ) - до прорезывания, слюна - после прорезывания. В плазме крови и ВКЖ степень насыщения ионами кальция и фосфора меньше, чем в ротовой жидкости. Именно концентрация этих ионов определяет прежде всего минерализацию эмали. Созревание эмали наиболее интенсивно идет в течение первого года после прорезывания зуба, затем замедляется, но все же идет на протяжении всего периода существования зуба. Внедрение других ионов приводит к изменению структуры кристал­лической решетки ГА. Последствием изменения состава и, следовательно, структуры кристаллической решетки могут быть:

• разрушение кристаллической решетки ГА

• изменение физико-химических свойств кристаллов, в частности, рас­творимости.

Разрушение кристаллической решетки ГА происходит при замещении в ней множества ионов кальция и фосфора другими ионами. Это имеет место при замене множества ионов кальция ионами гидроксония (протонами) на определенной стадии развития кариеса, кроме того может происходить при включении в кристаллическую решетку большого числа ионов фтора (уравнение 4). Последнее характерно для флюороза - патологического про­цесса в эмали при поступлении в организм большого количества фтора, в частности, с питьевой водой. Морфологически структура эмали при этом значительно изменена.

Критерием сохранения кристаллической решетки ГА является соот­ношение Са/Р в пределах 1,33-2,0. При снижении соотношения ниже 1,3 кристаллическая решетка разрушается.

Растворимость эмали изменяется при замещении в кристаллической решетке ГА небольшого количества ионов кальция и фосфора. Под растворимостью эмали понимают переход ионов кальция и фос­фора ГА в раствор, в ротовую жидкость. Вследствие растворимости эмали происходит ее деминерализация.

Почему при изменении состава ГА изменяется его растворимость?

В кристалле ионам свойственно тепловое движение, они не абсолютно неподвижно закреплены в узлах кристаллической решетки. Вследствие этого ионы стремятся перейти в жидкую фазу. Этому переходу ионов препят­ствует притяжение разноименно заряженных ионов кристаллической ре­шетки. Однако, если в кристаллической решетке присутствуют чужеродные ионы, то сила, удерживающая ионы изменяется. Растворимость возрастает или снижается в зависимости от характера влияния чужеродных ионов на межионное притяжение в кристалле.

Увеличение растворимости эмали происходит вследствие внедрения Н+(уравнение 1 см.выше), Мg2+(уравнение2), цинк, таллий и барий являются активаторами декальцинации, селен — один из наиболее кариесогенных элементов.

Более 30 микроэлементов участвуют в процессе минерализации. Магний, марганец и молибден являются активаторами ферментных процессов и необходимы для кальцификации твердых тканей зуба. Причем, молибден в больших концентрациях действует как яд; в микродозах он повышает устойчивость зубов к кариесу. Стронций и ванадий увеличивают интенсивность кальцификации,

Снижение растворимости эмали происходит вследствие внедрения до­полнительных ионов Са2+, РО43-, а также небольшого количества ионов фторид-ионов.

Содержание фторидов в зубах отражает количество биодоступного фторида в период формирования зубов; в толще сформированной эмали содержание фторидов остается постоянным в отличие от содержания фторидов в костях, которые продолжают накапливать их в течение жизни. Изменения концентрации фтора, происходящие после прорезывания зубов, наблюдаются в поверхностном слое эмали (приблизительно 0,05 мм) и отражают диффузию ионов фтора из среды полости рта (из слюны, принимаемых внутрь веществ, зубного налета, терапевтических аппликаций). В поверхности дентина, обращенной к пульпе зуба, содержание фторидов также изменяется после прорезывания зубов. Это связано в основном с образованием вторичного дентина.

Характерным является распределение ионов фтора в эмали: в поверхностных слоях эмали концентрация фторидов является сравнительно высокой и составляет от 500 до 4000 мг/кг, в глубоких слоях эмали концентрация фторидов ниже – от 50 до 100 мг/кг. Концентрации фторидов в дентине лежат между значениями концентраций, характерных для поверхностных и глубоких слоев эмали, и составляет от 200 до 1500 мг/кг. Известно, что содержание фторидов повышается в области первичного кариозного повреждения (стадия белого пятна) и отражает усиление диффузии фторидов в более порозные (менее минерализованные) участки эмали.

Фториды участвуют в минерализации зуба, взаимодействуя с гидроксиапатитом, образуют гидроксифторапатиты, более устойчивые к воздействию кислот. Их образование увеличивает твердость эмали, снижает ее проницаемость, что лежит в основе повышения резистентности зубов к кариесогенным факторам.

Механизм противокариозного действия фторидов связан с ин-гибированием фермента гликолиза фосфоенолпируваткиназы у бактерий, в результате снижается расщепление углеводов в полости рта и продукции молочной и других кислот. Избыточное попадание фтора в организм (например, в условиях алюминиевого производства) нарушает минерализацию зубов. Развивается заболевание — флюороз. Механизм действия больших концентраций фтора сложен. Фтор образует с ионами кальция комплекс, выводимый из организма, в результате происходит обеднение солями кальция и нарушение минерализации зубов.

Таким образом, содержание в эмали кальция и фосфора - это пере­менная характеристика этой ткани. Внедрение в кристаллическую решетку ГА различных ионов приводит к изменению состава, строения кристалли­ческой решетки, изменению ее физико-химических свойств, в частности растворимости, а в конечном итоге - к изменению морфологии эмали. Процессы ионного обмена эмали определяются главным образом со­ставом и физико-химическими свойствами среды, в которой находятся зу­бы после прорезывания. Слюна и ротовая жидкость, как и кровь, играют роль про­межуточной среды, через которую вещества проникают в тка­ни зуба после их прорезывания. Они необходимы как один из факторов, участвующих в поддержании гомеостаза зуба.

Влияние витаминов и гормонов

Минерализация при образовании молочных зубов и постоянных до прорезывания, зависит от состояния организма в целом и его обеспеченности витаминами и гормональным статусом.

1. Ви­тамин Д, его активная форма диоксихолекальциферол, паратгормон (гормон паращитовидных желез), кальцитонин (гормон щитовидной железы, антагонист паратгормрна) – обеспечивают приток в костные ткани зуба необходимого количества кальция и фосфора. При недостаточности ви­тамина может возникнуть гипокальциемия с последующим на­рушением обызвествления твердых тканей зуба и образованием неполноценной кристаллической решетки гидроксиапатитов.

2. Витамин А – усиливает полимеризацию мономеров при биосинтезе хондроитинсульфатов.

3.Витамин С необходим для гидроксилирования пролина и лизина при синтезе коллагена.

4. Соматотропный гормон (СТГ) (гормон гипофиза) – увеличивает пролиферацию костных клеток, увеличивает сульфатирование при биосинтезе хондроитинсульфата.

Описанные процессы минерализации с участием коллагена идут в дентине и цементе. Эмаль содержит в качестве белковой матрицы неколлагеновые белки, однако можно думать, что и в эмали протекают сходные процессы.

studfiles.net

1.2. Дентин

Дентин составляет основную массу зуба. Его коронковая часть покрыта эмалью, корневая – цементом.

Дентин, как ткань, относится к группе специализированных костных тканей. Поэтому в его формировании выделяют две стадии: 1. Образование межклеточного вещества – или органической фазы, которая называется предентином. 2. Минерализация предентина и превращение его в дентин. На первой стадии процесс начинается с синтеза сложных углеводов – гликозамингликанов, которые связываются с водой за пределами клеток между отростками Томса и образуют основное гомогенное вещество – обязательную часть межклеточного вещества. После этого одонтобласты начинают синтезировать молекулы коллагена I типа, которые также выходят вне клеток между отростками Томса. Таким образом, межклеточное вещество, которое выделили одонтобласты, содержит только соединения органической природы, является по консистенции мягким, податливым и называется предентином.

Вторая стадия (минерализации) начинается с того момента, когда предентин достигает толщины 20-30 мкм, а затем эти стадии идут попеременно до тех пор, пока не образуется необходимая толщина дентина. Процесс минерализации регулируют сами клетки одонтобласты, которые активно захватывают из кровеносных сосудов зубного сосочка многие ионы (Са2+, Mg2+, Na+, F-, PO43- и др.). Последние транспортируются по отросткам одонтобластов в предентин, где включаются в структуру апатитов. Параллельно с этим клетки начинают выделять матриксные пузырьки, которые содержат ферменты – щелочную фосфатазу и пирофосфатазу, гидролизующие органические эфиры фосфорной кислоты и таким образом пополняющие пул неорганического фосфата в участках минерализации.

Образование дентина происходит в течение всего периода функционирования зуба при наличии жизнеспособной пульпы. Дентин, образующийся после прорезывания зубов, называют вторичным. Он характеризуется меньшей степенью минерализации и большим содержанием коллагеновых фибрилл.

В дентине содержится до 72% неорганических веществ и около 28% органических и воды. Неорганические соединения представлены, наряду с гидроксиапатитами и карбонатапатитами, фосфатом, карбонатом и фторидом кальция, органические - коллагеном и другими белками. Дентин построен из основного вещества и проходящих в нем канальцев, в которых расположены отростки одонтобластов и окончания нервных волокон, проникающих из пульпы. Основное вещество содержит коллагеновые фибриллы, собранные в пучки, и аморфное склеивающее вещество, химический состав которого изучен недостаточно, известно лишь, что оно включает большое количество минеральных солей.

Органическая основа дентина. В отличие от эмали дентин содержит большее количество органических веществ. В основном это белки:

Белки дентина

нерастворимые (90%) растворимые (10%)

– коллаген – собственно белки дентина

– структурные гликопротеины – сывороточные белки

Нерастворимые протеины в основном представлены коллагеном. Последний имеет особое строение, он не набухает в воде, устойчив к воздействию коллагеназы, содержит до 12% гидроксипролина, 2,0-3,5% лизина и гидроксилизина. В его составе также присутствует большое количество глутаминовой и аспарагиновой кислот, аргинина, лейцина, изолейцина и валина, мало циклических аминокислот, отсутствует триптофан.

Растворимые – это белки крови, проникающие через кровеносные сосуды. Они представлены сывороточными альбуминами,  и -глобулинами, ферментами гликолиза, цикла трикарбоновых кислот, фосфатазами и трансаминазами. Из собственных белков дентина следует упомянуть Са-связывающие белки с молекулярной массой 11 кДа.

Физиологическая роль протеинов дентина заключается в инициации минерализации, ее упорядоченности и регулируемости. Возможность влияния одонтобластов на минерализацию обусловлена тем, что проксимальный отросток этих клеток содержит митохондрии, эндоплазматический ретикулум, рибосомоподобные гранулы, т.е. элементы, характеризующие метаболическую активность.

Уровень проницаемости дентина корня для большинства минеральных компонентов значительно ниже, чем дентина коронки. Данное явление можно объяснить с учетом структуры этой ткани. Известно, что дентинных канальцев в области бугров зубов человека значительно больше, чем в дентине, прилежащим к фиссурам. Ранее существовало мнение, что жидкость из пульпы поступает в дентин по отросткам одонтобластов и, выделяясь через них в пространство между отростком и стенкой трубочки, возвращается обратно. В настоящее время считают, что анатомической основы для подтверждения дентинной циркуляции нет. Состав дентинной жидкости близок к интерстициальной и включает ионы хлора, калия, натрия.

В дентине также содержится около 1% лимонной кислоты, роль которой заключается в способности образовывать хелатные комплексы с кальцием для передачи его во внутрь гидроксиапатита (рис. 4).

Рис. 4. Хелатный комплекс цитрата с ионами кальция.

studfiles.net


Смотрите также