3. Определение морозостойкости бетона. Формула морозостойкости цемента


Морозостойкость цемента | Суровые будни начальника лаборатории

. контакты 8 929 943 69 68 http://vk.com/club23595476 .

Какая морозостойкость у цемента ?

Воздействие внешней среды на цементный камень. Морозостойкость цемента

Все бетонные сооружения в атмосферных условиях подвергаются воздействию низких температур, что приводит к возникновению в бетоне деформаций.

Многократные теплосмены постепенно разрыхляют структуру цементного камня и бетона, снижают прочность, что может привести к их разрушению. Долговечность бетонов в условияхнизких температур, попеременного замораживания и оттаивания определяется таким свойством, как морозостойкость. Во время эксплуатации бетон может подвергаться неоднократному переменному замораживанию и оттаиванию. При замерзании вода увеличивается в объеме примерно на 9 %. Сначала при температуре немного ниже 0 0С замерзает вода, находящаяся в пустотах и макропорах цементного камня, так называемая свободная. Потом замерзает вода в капиллярах, в наиболее тонких из них при – 25 0С.

Вода в гелевых порах замерзает при еще более низких температурах. Под давлением льда на стенки пор и капилляров цементный камень значительно увеличивается в объеме. Максимальное увеличение объема наблюдается в области температур от –5 до –20 0С и достигает примерно 1-2 мм/м.

При оттаивании объем уменьшается, однако не достигает первоначального значения. При попеременном замораживании и оттаивании в цементном камне возникают необратимые линейные деформации. Напряжения, которые создаются в структуре цементного камня в результате давления замерзающей воды на стенки пор и микротрещин, являются главной причиной разрушения бетонных конструкций.

При замерзании возникает гидростатическое давление защемленной замерзающей воды, не имеющей контакта с воздухом. Повторяемость циклов замерзания и оттаивания приводит к постепенному разупрочнению структуры бетона и его разрушению.

Сначала начинают разрушаться выступающие грани, затем поверхностные слои, постепенно разрушение распространяется вглубь цементного камня. Особенно опасно замораживание в раннем возрасте железобетонных конструкций. При армировании гладкой арматурой сцепление ее с бетоном может снизиться на 80 %, а арматурой периодического профиля снижение достигает 25 % за счет зацепления выступов профиля, но после оттаивания бетона на контакте с арматурой остается тонкий воздушный зазор вместо водяной пленки, обволакивающий арматурные элементы, при эксплуатации в него могут проникать агрессивные реагенты, а также вода и кислород из воздуха, что может резко повлиять не только на несущую способность конструкции, но и на ее долговечность [11]. Еще один фактор, негативно влияющий на структуру и свойства бетона – внутренний массоперенос. В капиллярно-пористом материале при изменении теплового поля, вследствие возникновения температурного градиента, влага начинает перемещаться из зоны с более высокой температурой в зону с более низкой. При замерзании свежезабетонированной конструкции охлаждение ее начинается с поверхности и постепенно нулевая изотерма перемещается во внутренние слои конструкции. Влага из внутренних слоев бетона начинает по капиллярам передвигаться к нулевой изотерме.

Особенно это заметно на контакте зерен крупного заполнителя с растворной матрицей, так как на их контакте в нижней части за счет седиментации всегда образуется тонкая водяная прослойка, замерзающая в первую очередь. Когда до нее доходит мигрирующая из внутренних слоев вода, в том числе физически связанная, она переходит в лед и ранее образовавшаяся ледяная прослойка увеличивается в объеме. В дальнейшем при положительных температурах она тает и полностью нарушает сцепление заполнителя с растворной матрицей бетона. Таким образом, из-за массопереноса нарушается монолитность бетона, что особенно наглядно можно видеть в поверхностных слоях оттаявшего бетона. Исследованиями В.В. Москвина, Ф.М. Иванова и др. [7] установлено, что при разрушении бетонов под действием низких температур большое значение имеет не только общая пористость материала, но и ее характер – структура капилляров. Структура капилляров формируется уже при гидролизе и гидратации составляющих цемента, образующиеся капилляры можно разделить на активные и пассивные. В активных капиллярах вода замерзает, что приводит к возникновению напряжений, в пассивных напряжения не возникают. При формировании структуры капилляров возможно защемление воздуха в результате контракции системы цемент – вода, образующиеся сферические поры служат амортизатором напряжений при образовании льда и благоприятно влияют на морозостойкость бетона. Длительную сопротивляемость материала замораживанию и оттаиванию С.В. Шестоперов [12] связывает с наличием небольшого числа дефектных мест, с которых в дальнейшем начинается процесс деструкции. Дефектными местами могут быть различные капилляры, воздушные поры и полости, контактный слой  с  C2S, крупными зернами C3S, минералами зерен различных минеральных добавок, новообразования из минералов цемента. Наличие в цементе преимущественно силикатов кальция при небольших В/Ц и условиях длительных сроков твердения при оптимальных режимах обеспечивает частичное залечивание ряда дефектов. Чем в более ранние сроки твердения бетон подвергается замораживанию и оттаиванию, тем больше вероятность его разрушения.

Существенно влияет на морозостойкость минералогический состав цемента.

Наибольшей морозостойкостью обладают алитовые цементы, имеющие низкое содержание С3А.

Содержание С3А в цементе не должно превышать 6-8 %, а дозировка гипса – строго соответствовать содержанию алюминатов. Пропаривание резко снижает морозостойкость, поскольку при этом образуется значительное количество сообщающихся капиллярных пор. Отрицательно влияют на морозостойкость цемента активные и инертные добавки даже при дозировке 6-8 %. Очень тонкое измельчение цемента отрицательно сказывается на морозостойкости бетонных изделий. Морозостойкость бетона одного и того же состава зависит от наличия растворенных в воде солей, скорости замораживания, условий и длительности предварительного твердения.

Сильно снижает устойчивость против замерзания наличие капиллярной пористости, особенно в ранние сроки его твердения при В/Ц, превышающих 0,5-0,6. Для уменьшения капиллярной пористости необходимо снижать В/Ц. Установлено [2], что при В/Ц = 0,4-0,45 и длительном твердении в нормальных температурно-влажностных условиях почти вся вода используется на реакции гидратации и в цементном камне содержится минимум капиллярных пор.

Пористость такого цемента характеризуется гелевыми порами, в которых вода находится в псевдотвердом состоянии и не замерзает вплоть до очень низких, почти не встречающихся в практике строительства температур.

Чтобы снизить В/Ц, рекомендуется вводить пластифицирующие гидрофильные и, особенно, гидрофобизирующие добавки. Гидрофобизирующие добавки, которые вводятся в количестве 0,015-0,1 %, не только снижают водопотребность, но и затрудняют подсос и миграцию воды. Кроме того, они способствуют увеличению количества замкнутых сферических пор, которые не заполняются водой. Такие поры играют роль запасных емкостей, в которые при расширении во время перехода в лед выдавливается из капилляров вода. м

http://vk.com/club23595476 . контакты http://vk.com/club23595476 .

xn--90afcnmwva.xn--p1ai

маркировка, определение и как увеличить?

Климат в нашем регионе характеризуется длинной зимой, пониженными температурными показателями, осадками и сильно промерзающим грунтовым слоем. Те материалы, которые используют в ремонтно-строительной сфере, имеют нестандартные характеристики, среди которых — морозостойкость. Морозостойкость бетона – качество, которое определяется умением выдерживать агрессивные погодные условия (перепады температуры), замерзание и оттаивание смеси бетона, что влияет на такое свойство, как прочность. Морозостойкость бетона помечают буквой F, как показатель того, что бетон выдержит даже максимальные температуры.

Преимущество в таком бетоне состоит в том, что он не изменяется в своей форме со временем, не крошится, подстраивается под любые погодные условия, переносит зоны с повышенной влажностью.

Маркировка морозостойкости

Такое определение, как марка является главным показателем. Каждой марке отведены определенные цифры. По ГОСТу обозначают специальные марки бетона: f50, f100, f150, f200, f300. Их объединяют в группы, зависящие от уровня эксплуатации:

  1. Низкий класс морозоустойчивости – меньше f50. Редко используемый тип раствора. При воздействии окружающей среды на бетон, он начнет трескаться, рассыпаться. То есть, закрыты широкие возможности.
  2. Умеренный – от f50 до f100. Эти виды используются часто в строительной сфере, потому что это средний стандартный показатель. Если будут постоянные колебания температуры, будет обеспечено многолетнее использование такого бетона, без его разрушения.
  3. Морозоустойчивость повышенного уровня – f150, f200. Выдерживает даже сильные перепады температур, может долго обладать своими характеристиками эксплуатации, которые не будут меняться.
  4. Высокий – от f300 до f500. Применим для особых случаев. К примеру, места, где время от времени изменяется уровень воды, нужно обеспечить устойчивость к различным переменам. Стоит дорого.
  5. Морозостойкость бетона очень высокого уровня – выше f500. Из-за очень высокого уровня морозостойкости применяется в индивидуальных случаях, когда строят на долгие века. Тут в составе применяют бетоны самых высоких марок, в которые вмешивают специальные добавки.

Когда на заводе сделали образец бетона, его погружают в водную среду либо специальный раствор. Держат там до полного поглощения воды, затем производят заморозку до температуры -18 градусов. Время от времени делают замеры, определяющие, насколько материал потерял прочность. В зависимости циклов таких замеров определяется коэффициент, а далее — маркировка.

Марка бетона по морозостойкости.

Для каждого региона и вида местности существует определенный класс. Перед началом строительных работ нужно проконсультироваться со специалистами, которые подберут оптимальный вариант. Чем больше уровень морозостойкости, тем выше стоимость на материал, ведь добавляют примеси, позволяющие изменять химический состав.

Способы определения показателя

Морозостойкость определяют благодаря испытаниям, в которых замораживают и размораживают смесь несколько раз. Метод лабораторного эксперимента предполагает следующее: чтобы провести исследование, берут базовые (неоднократный цикл замораживания и размораживания), контрольные (прочность состава) образцы раствора. Они не должны иметь дефектов. Для исследования применяют морозильную камеру, стеллажи, контейнеры, залитые водой. Заморозку производят при температуре до -130 градусов, процесс оттаивания – до 180 градусов. Можно подтвердить маркировку лишь в том случае, если не была потеряна такая характеристика, как прочность.

Такое испытание может не всегда оказаться правдивым, поскольку в искусственно созданных условиях стройматериал может рассыпаться, а в природных – быть надежным продолжительное время. Это проявляется и из-за разных темпов высушивания. Летом высокие температуры влияют на уровень просушки, происходит насыщение солнечной энергией, а в лабораторных – насыщение водой.

Существуют варианты, когда для определения морозостойкости можно провести испытание подручными методами. Чтобы оценить показатель, смотрят на такие параметры:

  • Вид стройматериала. Крупнозернистая структура, трещины, пятна, шелушение, расслаивание говорят о том, что такой бетон обладает низким качеством с пониженным уровнем морозостойкости.
  • Водопоглощение. Когда показатель колеблется в пределах 5-6 %, можно говорить о плохой устойчивости к низким температурам.
  • Если бетон, хорошо насыщенный влажностью, начинают сушить на солнце, и он трескается, говорят о низком показателе.

Как увеличить морозостойкость?

Бетон без морозостойких добавок.

Существует ряд способов увеличения морозостойкости. Исследуемая характеристика напрямую зависима от того, в каком количестве и размерах находятся поры, от качества и состава цемента, от прочности:

  • Первый и наиболее простой способ повышения уровня морозостойкости – это снижение макропористости. Применение добавок и условий для скорейшего затвердевания раствора снижает до минимума потребность в водном компоненте. Как результат, уменьшаются поры.
  • Второй – уменьшение количества воды в цементном растворе. Следует применять заполнители, которые меньше всего загрязнены, добавки, снижающие необходимость в водной массе.
  • Третий – если заморозить стройматериал в позднем возрасте, то поры уменьшаются.
  • Четвертый – применение добавок. Именно они повышают образование маленьких пор, в которые вода не проникает.
  • Пятый – гидроизоляция. Применение специальных красок или пропиток, благодаря которым появляется защитная пленка.

Вывод

Морозостойкостью называют свойство бетонной смеси, способное противостоять колебаниям температурного режима. Морозостойкий раствор предотвращает попадание влаги. Необходимость в нем велика, потому что конструкции находятся в зонах смены температуры, а значит, понижаются свойства обычных смесей. В строительном мире нету ни одного идеально подходящего класса бетона для всех местностей. Все подбирается индивидуально.

Существуют методы испытания морозостойкости, которые можно проводить как в специально созданных условиях, так и естественных. Переход к использованию такого морозостойкого бетона обеспечит долговечность и прочность построек, которым не страшны смены погодных условий.

kladembeton.ru

морозостойкость курсовая джахар

Министерство образования и науки Российской Федерации

Санкт-Петербургский Государственный Архитектурно-строительный Университет

Кафедра строительных материалов и технологий

Курсовая

Дилатометрический метод ускоренного определения морозостойкости бетона

ГОСТ 10060.3-95

Выполнил: Ужахов Д. М.

Группа СМ-1

Проверил: Ковалева А.Ю.

Санкт-Петербург

2012

СОДЕРЖАНИЕ

1. Описание свойства морозостойкости бетона

2. Для чего определяется морозостокость бетона

3. От чего зависит морозостойкость бетона

4. Область применения

5. Нормативные ссылки

6. Средства испытания и вспомогательные устройства

7. Порядок подготовки к проведению испытаний

8. Порядок проведения испытаний

Описание свойства морозостойкости бетона

Морозостойкостью называют способность насыщенного водой бетона сохранять прочность и не разрушаться при попеременном замораживании и оттаивании. Причиной разрушения является свойство воды при переходе в лед увеличиваться в объеме более чем на 9% и создавать внутреннее давление на стенки пор.

По морозостойкости бетон подразделяют на марки F50, F75, F100, F150, F200, F300, F400, F500, F600, F800 и F1000. Марка назначается в зависимости от вида конструкций и условий эксплуатации.

Морозостойкость бетона зависит от количества макропор его структуре, характера пористости, минерального и вещественного состава цементов, прочности бетона на растяжении. Уменьшение макропористости бетона повышает его морозостойкость. Это достигается снижением водоцементного отношения, введением в бетонную смесь химических добавок, позволяющих уменьшить ее водопотребность и снизить расход воды, применением незагрязненных заполнителей оптимального состава с минимальной водопотребностью, созданием благоприятных температурно-влажностных условий твердения, качественным уплотнением бетонной смеси, а также замораживанием бетона более позднем возрасте, когда за счет образования повышенного количества гидратных веществ увеличивается его плотность.

Повысить морозостойкость бетона можно изменением характера пористости. Достигается это введением в бетонную смесь воздухововлекающих добавок. Необходимо создать 4-6% очень мелких резервных пор, не заполняемых водой при обычном насыщении, но заполняемых под давлением замерзающей воды. Наиболее эффективны гидрофобные воздухововлекающие добавки ГКН-10, ГКН-11, которые уменьшают водопоглощение бетона.

Существенное влияние на морозостойкость бетона оказывает вид применяемого цемента. Наибольшую морозостойкость имеют бетоны на портландцементе без минеральных добавок с содержанием минерала С3А до 5%. Их применяют для гидротехнических сооружений зоны переменного уровня воды в суровых климатических условиях. Еще более высокую морозостойкость имеют бетоны на глиноземистом цементе.

Бетоны на цементах сложного вещественного состава имеют пониженную морозостойкость. Особенно пуццолановый портландцемент с активными добавками осадочного происхождения.

При давлении льда на стенки пор бетона при замораживании возникают напряжения растяжения. Поэтому все мероприятия, увеличивающие предел прочности бетона на растяжение, повышают его морозостойкость.

Для чего определяется морозостокость бетона

Большинство исследований, выполненных по проблеме морозостойкости бетона, посвящено механизму разрушения бетона под действием переменного замораживания и оттаивания и влиянию на этот процесс различных факторов состава и структуры. Эти исследования позволили разработать научные основы прогнозирования и обеспечения необходимой стойкости бетона к совместному действию воды и знакопеременных температур. Они учитывают влияние на морозостойкость бетона химико-минералогического и вещественного состава цемента и заполнителей, их физико-механических характеристик, особенностей порового строения бетона и его связь с составом и структурой, условия уплотнения и твердения бетона, а также особенности его работы в конструкциях и сооружениях.

От чего зависит морозостойкость бетона

5 см. По­этому для надлежащего эффекта необходимо обеспечит Морозостойкость бетона зависит от его строения, особенно от характера пористости, так'как последний будет определять объ­ем и распределение льда, обра­зующегося в теле бетона при от­рицательных температурах, и, следовательно, значение возни­кающих напряжений и интенсив­ность протекания процесса ос­лабления структуры бетона.

В микропорах бетона разме­ром   10™5 см  обычно содержится

связанная Вода, которая не переходит в лед даже при очень низ­ких температурах (до —70°С), поэтому микропоры не оказывают заметного влияния на морозостойкость бетона. Последняя глав­ным образом зависит от объема макропор в бетоне и от их строения.

Существует два различных способа повышения морозостойко­сти бетона: 1) повышение плотности бетона, уменьшение объема макропор и их проницаемости для воды, например за счет сниже­ния В/Ц, применения добавок, гидрофобизирующих стенки пор, или кольматации пор пропиткой специальными составами; 2) со­здание в бетоне с помощью специальных воздухововлекающих до­бавок резервного объема воздушных пор (более 20% от объема замерзающей воды), не заполняемых при обычном водонасыще-нии бетона, но доступных для проникания воды под давлением, возникающим при ее замерзании. Зависимость морозостойкости от водоцементного отношения приведена на рис. 7.4. Обычно для получения достаточно морозостойкого бетона В/Ц должно быть менее 0,5.

Весьма эффективным и сравнительно простым повышением мо­розостойкости является применение воздухововлекающих доба­вок.

Для получения морозостойкого бетона необходимо, чтобы рас­стояние между пузырьками воздуха, т. е. толщина прослоек меж­ду соседними воздушными порами не превышало 0,02ь, не толь­ко определенный объем воздухововлечения, но и получение воз­душных пор возможно меньшего размера, так как это позволяет уменьшить их общий объем и способствует повышению морозо­стойкости бетона при наименьшем снижении его прочности вслед­ствие воздухововлечения. Обычно в бетоне с воздухововлекающи-ми добавками удельная    поверхность    пор, характеризующая их размеры, составляет   1000...2000 см2/см3,  размер    пор — 0,005... 0,1 см, а расстояние между ними не превышает 0,025 см.

Оптимальный объем вовлеченного воздуха составляет 4...6% и определяется расходом цемента, воды и крупного заполнителя. Объем увеличивается при понижении крупности заполнителя и повышении расхода цемента и воды.

Область применения.

Настоящий стандарт распространяется на все виды бетонов, кроме бетонов дорожных и аэродромных покрытий, и устанавливает базовый (первый) метод определения морозостойкости

Нормативные ссылки.

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 10060.0-95 Бетоны. Методы определения морозостойкости. Общие требования.

ГОСТ 10180-90 Бетоны. Методы определения прочности по контрольным образцам.

ГОСТ 23732-79 Вода для бетонов и растворов. Технические условия.

Средства испытания и вспомогательные устройства.

4.1 Оборудование для изготовления, хранения и испытания бетонных образцов должно соответствовать требованиям ГОСТ 10180.

4.2 Морозильная камера, обеспечивающая достижение и поддержание температуры до минус (18±2)°С.

4.3. Технические весы, обеспечивающие точность измерения в соответствии с метрологической обеспеченностью метода.

4.4 Ванны для насыщения и оттаивания образцов с устройством для поддержания температуры воды (18±2)°С.

4.5 Сетчатый контейнер для размещения основных образцов.

4.6 Сетчатый стеллаж для размещения образцов в морозильной камере.

4.7 Вода по ГОСТ 23732.

Порядок подготовки к проведению испытаний

5.1 Бетонные образцы изготовляют и отбирают по 4.5 - 4.10 ГОСТ 10060.0.

5.2 Контрольные и основные образцы насыщают водой по 4.11 ГОСТ 10060.0.

Порядок проведения испытаний

6.1 Контрольные образцы через 2-4 ч после извлечения из ванны испытывают на сжатие по ГОСТ 10180.

6.2 Основные образцы загружают в морозильную камеру в контейнере или устанавливают на сетчатый стеллаж камеры таким образом, чтобы расстояние между образцами, стенками контейнеров и вышележащими стеллажами было не менее 50 мм. Началом замораживания считают момент установления в камере температуры минус 16 °С.

6.3 Число циклов переменного замораживания и оттаивания, после которых должно проводиться испытание прочности на сжатие образцов бетона после промежуточных и итоговых испытаний, устанавливают в соответствии с таблицей 3 ГОСТ 10060.0. В каждом возрасте испытывают по шесть основных образцов.

6.4 Образцы испытывают по режиму, указанному в таблице 1.

6.5 Образцы после замораживания оттаивают в ванне с водой при температуре (18±2)°С. Образцы размещают, как указано в 6.2, при этом образцы должны быть погружены в воду таким образом, чтобы над верхней гранью был слой воды не менее 50 мм.

Таблица 1

 

Режим испытаний

Размер

Замораживание

Оттаивание

образца, мм

время, не менее, ч

температура, °С

время, ч

температура, °С

100х100х100

2,5

 

2 ± 0,5

 

150х150х150

3,5

минус 18 ± 2

3,0 ± 0,5

18 ± 2

200х200х200

5,5

 

5,0 ± 0,5

 

Примечание - Минимальную продолжительность замораживания увеличивают для легких бетонов со средней плотностью D1500 - D1200 на 0,5 ч, со средней плотностью D1200 - D1000 - со средней плотностью D900 и менее - на 1,5 ч.

6.6 Температуру воздуха в морозильной камере измеряют в центре ее объема в непосредственной близости от образцов.

6.7 Воду в ванне для оттаивания образцов меняют через каждые 100 циклов переменного замораживания и оттаивания.

6.8 Основные образцы через 2 - 4 ч после извлечения из ванны испытывают на сжатие по ГОСТ 10180.

studfiles.net

» Морозостойкость бетона

Морозостойкость бетона — это способность материала выдерживать повторное замораживание и оттаивание, сохраняя при этом свои физико-механические свойства. Этой характеристикой должны обладать смеси, предназначенные для возведения фундамента, укрепления массивных конструкций и строительства гидротехнических сооружений. Невысокое значение морозостойкости приводит к понижению несущих способностей и повышению износа поверхности.

Методы расчета морозостойкости

Определение морозостойкости бетона закреплено в ГОСТ 10060.0-95. В этом техническом документе описано 4 метода расчета показателя. Они предполагают испытание материала путем многократного замораживания или оттаивания в воде или соляном растворе.

Требования распространены на все бетонные смеси, за исключением материала, предназначенного для дорожного покрытия или обустройства взлетно-посадочных полос. Не подлежат эксперименту также бетонные смеси, в которых используется воздух в качестве вяжущего элемента.

Для испытания бетона на морозостойкость подготавливаются контрольные и базовые образцы строительной смеси. Первые предназначены для расчета прочности состава на сжатие, а базовые образцы подвергаются повторному циклу замораживания и оттаивания в лабораторных условиях. Допустимая погрешность по массе составляет 0,1%.

Отобранные образцы должны достичь проектного возраста и не содержать дефектов. Для испытания: морозильная камера, стеллажи, контейнеры для насыщения материала водой.Суть всех испытаний сводится к тому, что образцы подвергаются многократному замораживанию и оттаиванию, а затем проверяются на прочность. Заморозка осуществляется при температуре -130 ºС, а оттаивание — при +180 ºС. Марка бетона соответствует заявленной, если материал не потерял свою прочность.

Лабораторные испытания бетона на морозостойкость не всегда являются достоверными. В созданных условиях материал может разрушиться, а в естественных сохранять приемлемую надежность. Разница в естественных условиях и созданных в лабораториях заключается в темпах высушивания. В первом случае на бетонную смесь оказывают значительное влияние высокие температуры в летний период, а во втором — насыщение водой. Соответственно, лабораторные образцы разрушаются быстрее.

Дополнительные способы определения показателя

Морозостойкость бетона можно определить по нескольким подручным методам. Для оценки показателя опытные строители анализируют следующие параметры:

  1. Внешний вид. Крупнозерность материала, наличие трещин, бурых пятен, шелушения и расслаивания свидетельствуют о низком качестве бетонного состава, которому характерна пониженная морозостойкость.
  2. Уровень водопоглощения. Если данный показатель составляет 5-6%, то это означает, что в составе есть трещины, которые снижают его устойчивость к низким температурам.
  3. Высушивание материала, насыщенного влагой, на солнце. Растрескивание материала свидетельствует о низкой морозостойкости бетона.

Ускоренный метод определения показателя осуществляется по следующей схеме: отобранные образцы материала погружают на 24 часа в серно-кислый натрий, а затем высушивают в течение 4 часов при температуре 100 ºС. Затем их снова погружают в раствор и высушивают. Необходимо повторить процедуру 5 раз. По окончании манипуляций бетон осматривают на наличие трещин и других дефектов. Их отсутствие свидетельствует о высоком качестве материала.

Классификация

В редакциях ГОСТ марка материала по морозостойкости обозначается буквой F и цифрой от 25 до 1000. Цифровая шифровка обозначает количество циклов замораживания и оттаивания состава.

Класс морозостойкости материала и его сфера применения

Класс морозостойкости Марка материала Сфера применения
низкий до F50 Практически не используется
нормальный от F50 до F150 Это самая распространенная марка бетона по морозостойкости. Применяется во всех широтах России, где можно четко выделить 4 сезона года. Эксплуатация строений может достигать 100 лет.
повышенная от F150 до F300 Бетон применяется в регионах, где суровой зимой почва промерзает на несколько метров, например, в Западной Сибири
высокая от F300 до F500 Материал используют в местностях, где есть риск повышенной влажности грунта и он промерзает на несколько слоев
крайне высокая от F500 до F100 Используется для возведения строений на века

В обычном строительстве популярен материал с морозостойкостью от F150 до F200. Бетон с повышенными показателями применяется при возведении строений на влагонасыщенном грунте или гидротехнических сооружений.

При выборе марки бетона по морозостойкости нужно учитывать климат местности и число смен оттаивания и замораживания зимой. Только прочный материал устойчив к резким температурным перепадам.

Бетон рекомендуется использовать до тех пор, пока его прочность на сжатие не уменьшиться на 5%. Марка F300 означает, что до начала потери прочности он может замерзнуть и оттаять 300 раз. Его рекомендуется использовать в средней полосе, где перепады температур — частое явление.

Как повысить морозостойкость состава

Морозостойкость бетона зависит от количества и размеров пор в структуре, состава цемента и прочности на растяжение.

Снижение пористости

Самый простой способ повышения показателя — снизить макропористость. Специальные добавки и создание особых условий затвердевания позволяют минимизировать потребность в воде, что приведет к уменьшению размеров пор в структуре.

Сокращение объема воды

Для повышения морозостойкости бетона следует уменьшить количество воды в цементном составе.

Это достигается за счет использования заполнителей с наименьшей загрязненностью и специальных добавок, понижающих потребность в воде. Раствор бетона за счет применения добавок не утрачивает свои другие эксплуатационные свойства.

Увеличение возраста

При замораживании материала в более позднем возрасте можно добиться сокращения пор.

Добавки

Для повышения устойчивости к температурным перепадам можно поменять расположение пор в структуре. Для этого в бетонный состав следует ввести добавки, которые увеличивают образование мелких пор. В них практически не попадает вода. К таким противоморозным усадкам относятся соли соляной, азотной и угольной кислот, а также их основания. Введение добавок осуществляется термосным или прогревным методами.

Морозостойкость бетона можно повысить путем введения в состав воздухововлекающих добавок (до 6% от объема). Оптимальное расстояние между соседними порами воздуха должно не превышать 0,025 см. Объем вовлечения зависит от количества цемента, воды и заполнителя. При снижении крупности заполнителя и увеличения объема цемента и воды объем вовлеченного воздуха рекомендуется повысить.

Гидроизоляция

Иногда для повышения морозостойкости бетона достаточно защитить поверхность от влаги. В этом случае лучше использовать полимерные пропитки или фасадные краски, образующие плотную пленку.

Как залить бетон в мороз

Высокопрочный строительный материал применяется в зимний период тогда, когда строительные работы запоздали или ведутся в местностях с повышенной влагонасыщенностью почвы. Для эффективной заливки бетонного состава зона строительной площадки должна прогреваться с помощью тепловой пушки или электрического тока. Во втором случае используются термоэлектрические маты, которые одновременно выполняют 2 функции — изоляцию и обогрев.

Для обогрева можно использовать обычную теплоизоляцию, например: двухстороннюю пленку на расстоянии около 2 см от фундамента. На нее накладывается изоляция и устанавливается теплогенератор. Для затвердевания состава в зимний период необходимо выдержать минимум 4 дня.

Длительное воздействие отрицательных температур, многократное оттаивание и заморозка способны снизить эксплуатационные характеристики бетона в несколько раз. С помощью противоморозных усадок и специальных добавок можно уменьшить размер пор в структуре (или увеличить количество мелких пор), минимизировать влагу в цементном растворе, что позволит повысить устойчивость состава к низким температурам.

tehno-beton.ru

3. Определение морозостойкости бетона

Морозостойкость – способность материала в насыщенном водой состоянии выдерживать многократное попеременное замораживание и оттаивание без видимых признаков разрушения, без определенного снижения прочности, а в ряде случаев – без определенной потери массы.

Морозостойкость материала количественно оценивается маркой по морозостойкости. За марку по морозостойкости принимают наибольшее число циклов попеременного замораживания и оттаивания, которое выдерживают образцы материала без видимых признаков разрушения и определенного снижения прочности и потери массы.

Существуют следующие методы определения морозостойкости бетона:

  1. Базовый для всех видов бетона, кроме бетонов дорожных и аэродромных покрытий.

  2. Базовый для бетонов дорожных и аэродромных покрытий и ускоренный для других видов тяжелого бетона.

  3. Ускоренный для бетонов дорожных и аэродромных покрытий и других видов тяжелого бетона.

  4. Ускоренный при однократном замораживании – дилатометрический.

  5. Ускоренный при однократном замораживании – структурно-механический.

Четвертый и пятый методы применяются для всех бетонов, кроме бетонов дорожных и аэродромных покрытий, при этом последний метод предназначен для оценки морозостойкости бетона при подборе и корректировке его состава и не применяется для контроля этого показателя качества бетона.

В данной работе рассматриваются первые три метода определения морозостойкости бетона как наиболее часто применяемые на практике.

Размеры и количество образцов, а также среда для их испытаний в каждом из этих методов приведены в табл.3.18.

Таблица 3.18. Размеры и количество образцов, среда для их испытаний

Метод определе-

ния морозо-

стойкос-ти

Размеры образцов-кубов, мм

Среда

Число образцов

насы-щения

замора-живания

оттаи-вания

Конт-роль-ных

основ-ных

1

2

3

100x100x100

или

150x150x150

100x100x100

или

150x150x150

100x100x100

или

70x70x70

Вода

5%- ный раствор NaCl

5%- ный раствор NaCl

Воздух

Воздух

5%- ный раствор NaCl

Вода

5%- ный раствор NaCl

5%- ный раствор NaCl

6

6

6

12

12

6

Контрольными называют образцы, которые испытывают на сжатие через 2-4 ч после первоначального насыщения водой или водным раствором соли.

Основными называют образцы, которые испытывают на сжатие через 2-4 ч после проведения заданного количества циклов попеременного замораживания в морозильной камере и оттаивания в ванне с водой или водным раствором соли. Первоначальное насыщение образцов бетона водой или водным раствором соли производится при температуре (18±2)°С пу­тем погружения в ванну с водой или водным раствором соли на 1/3 их высоты с последующим выдерживанием в течение 24 ч, затем погружением на 2/3 высоты с выдерживанием 24 ч и, наконец, полным погружением (образцы должны быть окружены водой со всех сторон слоем не менее 20 мм) с выдерживанием в течение 48 ч.

Режимы замораживания и оттаивания образцов в первом и втором методах приведены в табл.3.19.

Таблица 3.19. Режимы замораживания и оттаивания образцов в первом и втором методах

Размеры образцов

Режимы

замораживания

оттаивания

время, не менее, ч

температура, 0С

время, ч

температура, 0С

100x100x100

150x150x150

2,5

3,5

- (182)

20,5

30,5

+(182)

В третьем методе замораживание ведут так: понижают температуру до минус 50-55°С в течение (2,50,5) ч, затем выдерживают при этой температуре еще (2,5±0,5) ч, затем повышают температуру до минус 10°С в течение (1,5±0,5) ч и после этого выгружают из морозильной камеры. Оттаивание ве­дут в течение в (2,5±0,5) ч при температуре +(18+2)°С.

При замораживании кубов с ребром 70 мм время понижения и выдерживания температуры, а также оттаивание образцов уменьшают на 1 час.

В первом и втором методах воду или водный раствор соли в ванне для оттаивания меняют на свежий через каждые 50 циклов, а в третьем методе ─ через каждые 5 циклов.

Количество циклов замораживания и оттаивания, после которых должно производиться испытание образцов на сжатие, а также определяться потеря массы для бетонов дорожных и аэро­дромных покрытий, для заданной марки бетона по морозостойкости приведено в табл.3.20.

Таблица 3.20. Марки бетона по морозостойкости

Метод испытания

Число циклов замораживания-оттаивания для бетона марки

F50

F75

F100

F150

F200

F300

F400

F500

F600

F800

F1000

Первый метод

35 *

50

50

75

75

100

100

150

150

200

200

300

300

400

400

500

500

600

600

800

800

1000

Второй метод

Для бетонов дорожных и аэродромных покрытий

35

50

50

75

75

100

100

150

150

200

200

300

300

400

400

500

500

600

600

800

800

100

Ускоренный для других бетонов

-

8

-.

13

-.

20

20

30

30

45

45

75

75

110

110

150

150

200

200

300

300

450

Третий метод

Ускоренный для бетонов дорожных и аэродромных покрытий

-

-

5

10

20

35

55

80

105

155

205

Ускоренный для других бетонов

-

2

3

4

5

8

12

15

19

27

35

* Над чертой указано число циклов, после которого производится промежуточное испытание, под чертой – число циклов, соответствующее марке бетона по морозостойкости.

Марку бетона по морозостойкости считают соответствующей требуемой, если снижение средней прочности основных образцов после установленного числа циклов замораживания и оттаивания по сравнению со средней прочностью контрольных образцов будет не более чем на 5 %, а для бетона дорожных и аэродромных покрытий кроме того не должно быть потери массы более чем на 3 %. В первом и втором методах устанавливается промежуточное число циклов, после которых должно произво­диться испытание основных образцов на сжатие.

Если среднее значение прочности образцов после промежуточных циклов будет меньше средней прочности контрольных образцов более чем на 5 % или для бетонов дорожных и аэродромных покрытий потеря массы будет больше чем на 3 %, то дальней­шее испытание следует прекратить и марку бетона по морозо­стойкости считать не соответствующей требуемой.

Результаты опытов заносят в табл.3.21.

Таблица 3.21. Результаты определения морозостойкости бетона

№ образцов

Масса образцов в водо-насыщенном состоянии, г

Размеры образцов, мм

Количество циклов замора-живания и оттаивания

Масса образцов после испытания

Предел прочности на сжа-тие контрольных образцов, МПа

Предел прочности на сжа-тие основных образцов, МПа

Потеря в массе, %

Потеря в прочности, %

Морозостойкость, циклов

основных

контрольных

Испытание бетона на морозостойкость классическими (базовыми) методами имеет особенность, связанную с поведением цементной составляющей в процессе испытаний. В бетоне, даже после набора им марочной прочности, остается заметное количество зерен цемента, не полностью прореагировавших с водой, т.е. способных к твердению. Гидратация этой части при испытании на морозостойкость может происходить в период оттаивания образцов в воде. Таким образом, в процессе испытаний одновременно протекают два конкурирующих процесса: деструктивный ─ разрушение цементного камня при замораживании, и конструктивный ─ рост прочности цементного камня во время нахождения образцов в воде. в начале испытаний суммарный эффект может быть положительным, т.е. прочность бетона даже увеличивается. Затем начинает превалировать процесс деструкции, и прочность снижается. Поэтому при испытании бетона на морозостойкость по базовым методам нормативная потеря прочности, указывающая на окончание испытаний, составляет всего 5% от начальной прочности бетона, в то время как при испытании кирпича нормативная потеря прочности составляет 15%.

Контрольные вопросы

  1. Какими показателями характеризуют качество тяжелого бетона?

  2. Что такое класс и марка бетона по прочности на сжатие?

  3. Как изготавливают и испытывают образцы для определения прочности бетона на сжатие?

  4. Как рассчитывают прочность отдельных образцов и среднюю прочность бетона на сжатие?

  5. В чем заключается принцип определения прочности бетона неразрушающими методами? Какими они бывают?

  6. Как строится градуировочная зависимость в неразрушающих методах испытаний бетона?

  7. Какой метод неразрушающих механических испытаний реализуется с помощью молотка Кашкарова?

  8. Каким методом и как определяют прочность бетона на сжатие с помощью склерометра ОМШ-1?

  9. Что такое морозостойкость материала, чем она характеризуется и от чего зависит?

  10. Какие существуют методы определения морозостойкости бетонов?

  11. Как определяется морозостойкость всех видов тяжелого бетона, кроме бетонов дорожных и аэродромных покрытий?

  12. Как определяется морозостойкость бетонов дорожных и аэродромных покрытий?

Практическая работа №4

Решение задач по свойствам тяжелого бетона

Свойства бетонов определяются качеством составляющих их компонентов и количественным соотношением между ними. Поэтому чрезвычайно важно иметь практические навыки как в оценке качества составляющих бетона, так и в расчетах по проектированию их составов. Необходимо также уметь рассчитывать потребное количество материалов для производства заданного объема бетонных работ при известном составе бетона. В строительной практике весьма часты случаи, когда некоторые из ранее запроектированных компонентов бетона заменяются другими, отличающимися от первых по качеству, В таких случаях нужно уметь ввести в состав бетона необходимые коррективы с учетом свойств новых компонентов.

Приведенные ниже примеры задач и их решения помогут выполнить эти расчеты.

Задача 1.Расход цемента равен 300 кг на 1 м3бетона, водоцементное отношение В/Ц = 0,6. Химически связанная цементом вода составляет 15% от его массы. Определить пористость затвердевшего бетона.

Решение. Количество воды в 1 м3бетонной смеси:кг или 180 дм3.

Количество воды, химически связанной цементом:

кг или 45 дм3.

Количество свободной воды, не вступившей в химические реакции с цементом: дм3.

Следовательно, объем пор, образованных избыточной водой затворения, в 1 м3бетона будет равендм3.

Пористость затвердевшего бетона без учета гелевых пор в цементном камне и пор, образованных воздухом, который вовлекается в бетонную смесь при ее перемешивании:

.

Ответ: пористость затвердевшего бетона 13,5%.

Задача 2.Номинальный состав цементного бетона (по объему) 1:2,2:3,1 при водоцементном отношении В/Ц = 0,45. Сколько необходимо материалов для приготовления 150 м3бетона при расходе на 1 м3бетона 390 кг цемента? Влажность песка 6%, щебня – 2%. Насыпные плотности компонентов бетона: цемента – 1,3 т/м3; песка – 1,6 т/м3; щебня – 1,5 т/м3.

Решение. Находим насыпной объем цемента, расходуемого на 1 м3бетона:м3.

Насыпной объем сухого песка, расходуемого на 1 м3бетона:

м3.

Насыпной объем сухого щебня, расходуемого на 1 м3бетона:

м3.

Расход воды на 1 м3бетона:т или 0,176 м3.

Расход цемента на 150 м3бетона:т.

Расход песка влажностью 6% на 150 м3бетона:

т.

Воды в песке содержится: т или 9,5 м3.

Расход щебня с влажностью 2% на 150 м3бетона:

т.

Воды в щебне содержится: т.

Всего вносится воды вместе с заполнителями:

т или 13,7 м3.

Расход воды на 150 м3бетона:м3.

Задача 3.При испытании в возрасте 8 суток средний предел прочности тяжелого цементного бетона в кубиках размером 100100100 мм оказался равным 8,4 МПа. К какой приблизительно марке по прочности относится испытанный бетон?

Решение. Находим ориентировочную прочность бетона в 28-суточном (марочном) возрасте по формуле

МПа.

Для перехода к образцам стандартного размера 150 150150 мм полученное значение прочности бетона умножаем на коэффициент 0,95 , т.е.

МПа.

Следовательно, бетон ориентировочно относится к марке по прочности М100.

Ответ: бетон ориентировочно относится к марке по прочности М100.

Контрольные задания

1. Для приготовления бетона с прочностью в 14 – суточном возрасте 16,8 МПа применяется портландцемент марки 400 и заполнители высокого качества. Рассчитать водоцементное отношение при изготовлении данного бетона.

2. Какой активности и марки должен быть портландцемент для получения бетона с прочностью в 7 – суточном возрасте 11,5 МПа на рядовых заполнителях при водоцементном отношении В/Ц = 0,62.

3. Какой маркой по прочности будет обладать бетон, изготовленный на портландцементе с активностью 43,5 МПа и рядовых заполнителях при водоцементном отношении 0,55?

4. Определить плотность затвердевшего бетона, полученного из бетонной смеси состава по массе 1 : 1,9 : 3,8 при В/Ц=0,52, и плотностью 2380 кг/м3, если химически связанной с цементом воды в бетоне содержится 16 % от массы цемента.

5. Сколько тонн щебня необходимо взять для изготовления бетонного фундамента, имеющего размеры 10,0 х 1,5 х 0,6 м, если насыпная плотность щебня равна 1,42 т/м3, истинная плотность – 2,80 г/см3, а коэффициент раздвижки зёрен щебня – 1,25?

6. Определить плотность и коэффициент выхода бетонной смеси состава 1 : 2 : 4,5 (по массе) при В/Ц = 0,59, если на 1 м3 его расходуется 350 кг цемента, а насыпные плотности цемента, песка и щебня составляют соответственно 1,2 ; 1,58 и 1,46 т/м3.

7. Определить расход материалов для получения 35 м3бетона состава по массе 1 : 2 : 4,1 при В/Ц = 0,6, если плотность бетонной смеси составляет 2310 кг/м3.

8. Определить пористость бетонов, полученных из смесей, водоцементное отношение в которых было 0,5 и 0,75, и содержащих одинаковое количество воды затворения – 180 л на 1 м3 бетона. Химически связалось цементом воды в бетонах 15 % от массы цемента.

9. По известному составу бетона (расходы материалов на 1 м3бетона: цемента – 330 кг; воды – 180 л; песка – 730 кг и щебня – 1260 кг) определить расчётную плотность бетонной смеси; плотность затвердевшего бетона (если к этому времени провзаимодействовало с цементом 20 % воды от массы цемента) и пористость бетона, образовавшуюся вследствие потери избыточной воды затвердения.

10. На 1 м3бетона расходуется 285 кг портландцемента с насыпной плотностью 1,20 т/м3; 610 кг сухого песка с насыпной плотностью 1,56 т/м3; 1210 кг сухого щебня с насыпной плотностью 1,40 т/м3и 162 л воды. Составить дозировку материалов на один замес бетоносмесителя с емкостью по загрузке 425 л, если влажность песка равна 3%, а щебня 2%.

11. Номинальный состав тяжёлого бетона по массе был 1 : 1,9 : 4,1 при В/Ц = 0,45. Плотность бетонной смеси оказалась равной 2235 кг/м3. Определить расход материалов на 1 м3бетона при влажности песка 4%, а щебня – 1%.

12. Сколько кубометров щебня будет израсходовано на бетонирование покрытия дороги площадью 2500 м3толщиной 15 см, если насыпная плотность щебня 1,38 т/м3, истинная плотность – 2,70 г/см3, а коэффициент раздвижки зёрен щебня – 1,15?

13. Бетонный фундамент из бетона марки по прочности М200 имеет форму правильного параллелепипеда с размерами 4,0 х 6,0 х 2,0 м. Сколько требуется портландцемента для изготовления этого фундамента, если активность цемента 38,5 МПа, заполнители – среднего качества, а расход воды на 1 м3бетона равен 170 л?

14. Сколько портландцемента марки 400 необходимо израсходовать на

1 м3бетона марки по прочности М 400 при рядовых заполнителях, если расход воды на 1 м3бетона составляет 185 л?

15. Какой активности и марки должен быть портландцемент для получения бетона марки по прочности М200 на заполнителях низкого качества при водоцементном отношении В/Ц = 0,58?

16. Какой маркой по прочности будет обладать бетон, приготовленный из портландцемента марки 400 и заполнителей высокого качества при водоцементном отношении В/Ц = 0,65?

17. Для приготовления тяжёлого бетона марки по прочности М200 употребляются портландцемент с активностью 42 МПа и заполнители среднего качества (рядовые). Рассчитать водоцементное отношение при изготовлении данного бетона.

18. При испытании трёх бетонных кубиков с размером ребра 150 мм в 14 - суточном возрасте на гидравлическом прессе с площадью поршня 572 см2показания манометра были соответственно равны 8,2; 8,4; и 8,1 МПа. Какой марке по прочности соответствует бетон?

19. Определить минимально необходимую ёмкость бетоносмесителя и плотность бетонной смеси, если при одном замесе получается 2 т бетонной смеси состава 1 : 2 : 4 (по массе) при водоцементном отношении В/Ц = 0,6 и коэффициенте выхода, равном 0,7. Насыпные плотности материалов для бетона: песка – 1,6 т/м3, щебня – 1,5 т/м3и цемента –1,3 т/м3.

20. Определить расход сухих материалов по массе и объёму на 1 м3бетона, если номинальный состав его по массе 1 : 2,2 : 5,1 при водоцементном отношении 0,65. Насыпные плотности компонентов бетона: песка – 1600 кг/м3, щебня – 1450 кг/м3и цемента – 1300 кг/м3. Коэффициент выхода нужно взять из справочных данных.

21. Плотность бетонной смеси номинального состава 1 : 1,9 : 4,1 (по массе) оказалась 2235 кг/м3. Водоцементное отношение было 0,45. Определить расход составляющих материалов на 1 м3бетона, если в момент приготовления бетонной смеси влажность песка была 7%, а гравия - 4,0%.

22. Цементный бетон с 7-дневным сроком твердения показал предел прочности при сжатии 20 МПа. Определить ориентировочную активность цемента, если водоцементное отношение было 0,4.

23. Определить пористость цементного бетона состава 1 :1,9 : 4,5 (по массе) при В/Ц = 0,50, если химически связанная вода составляет 15% от массы цемента. Плотность бетона 2390 кг/м3при влажности 2%.

24. Определить коэффициент выхода и плотность цементного бетона, если для получения 555 м3его израсходовано 162,5 т цемента, 275 м3песка и 525 м3гравия, имеющих насыпные плотности соответственно 1,2 ; 1,6 и 1,5 т/м3. Водоцементное отношение было равно 0,4.

25. Номинальный состав цементного бетона по объёму 1: 2,5:3,1 при водоцементном отношении В/Ц = 0,45. Определить количество составляющих материалов на 135 м3бетона, если на 1 м3его расходуется 390 кг цемента, а влажность песка и гравия в момент приготовления бетонной смеси была соответственно равна 5,6% и 3,0%. Насыпная плотность цемента 1,3 т/м3, песка – 1,6 т/м3, гравия – 1,5 т/м3.

Практическая работа №5

Подбор состава тяжелого бетона

Подбор состава бетона заключается в определении расхода исходных материалов (вяжущего, воды, мелкого и крупного заполнителей) на 1 м3уплотненной бетонной смеси или в относительном выражении – соотношения по массе или объему между количествами цемента, песка и щебня (гравия) при обязательном указании водоцементного отношения. В последнем случае массу или объем цемента принимают за единицу, поэтому соотношение между составными частями бетона имеет вид: 1:X:Y при определенном В/Ц (гдеX– количество частей песка,Y– количество частей щебня или гравия).

От правильности проектирования состава тяжелого бетона зависят его плотность и прочность, которые, в свою очередь во многом определяют такие важные свойства как морозостойкость, водонепроницаемость и др. Рациональным считается тот состав тяжелого бетона, в котором расход вяжущего минимален при условии получения заданной прочности бетона и необходимой удобоукладываемости бетонной смеси.

При проектировании состава бетона сначала рассчитывают его ориентировочный состав, затем проверяют на опытных замесах удобоукладываемость бетонной смеси и прочность бетона, и уточняют состав бетона, если требуемые свойства недостигнуты. После этого пересчитывают номинальный (лабораторный состав) на полевой (производственный) с учетом влажности заполнителей и определяют расход материалов на один замес бетоносмесителя.

Расчет предварительного состава тяжелого бетона

Расчет предварительного состава тяжелого бетона производят на основе зависимости прочности бетона от активности цемента, цементно-водного фактора и качества заполнителей, а также зависимости подвижности бетонной смеси от расхода воды и других факторов. Требуемую среднюю прочность бетона определяют, исходя из заданного класса по прочности на сжатие, по формуле

, (3.10)

где В – класс бетона по прочности на сжатие;Кб– Коэффициент, зависящий от вида бетона (для тяжелого бетонаКбравен 0,778).

Если в задании указана марка бетона, то требуемую прочность бетона в МПа рассчитывают по формуле

Rб = 0,11.М, (3.11)

где М – заданная марка бетона.

Определение расходов песка и крупного заполнителя основано на формулах, которые вытекают из физических основ структурообразования бетона (принципы метода абсолютных объемов).

Порядок расчета состава тяжелого бетона следующий:

1. Водоцементное отношение определяют по формулам:

а) для обычного бетона (при В/Ц 0,4)

; (3.12)

б) для высокопрочного бетона (при В/Ц 0,4)

. (3.13)

Формулу (3.10) следует применять, если , в других случаях надо пользоваться формулой (3.11).

Значения коэффициентов АиА1берут из табл.3.22.

Таблица 3.22. Значения коэффициентов АиА1

Материалы для бетона

А

А1

Высококачественные

Рядовые

Пониженного качества

0,65

0,60

0,55

0,43

0,40

0,37

2. Водопотребность бетонной смеси (расход воды в дм3или кг на 1 м3бетона)назначают в зависимости от ее удобоукладываемости (подвижности или жесткости). Удобоукладываемость смеси, если она не задана, выбирается в зависимости от вида конструкции и способа формования (табл.3.23).

Таблица 3.23. Рекомендуемая удобоукладываемость бетонной смеси для различных конструкций

Вид конструкций, изделий и метод их изготовления

Подвиж-ность, см

Показатель жесткости, с

Монолитные конструкции

Подготовка под фундаменты и основания дорог

Полы, покрытия дорог и аэродромов, массивные неармированные конструкции

Массивные армированные конструкции

Тонкостенные конструкции, сильно насыщенные арматурой

2

2-3

2-4

6-8

30-60

25-30

15-25

6-10

Сборные конструкции

Изделия, формуемые с немедленной распалубкой

Стеновые панели, формуемые в горизонтальном положении с вибропригрузом

Изделия, формуемые вибропрокатом

0

0

0

80-160

60-80

50-60

Водопотребность бетонной смеси определяют по таблице 3.24 в зависимости от требуемой удобоукладываемости (подвижности или жесткости) бетонной смеси, вида и крупности заполнителя.

3. Расход цемента на 1 м3бетона определяют по формуле

. (3.14)

Если расход цемента на 1 м3бетона окажется меньше допускаемого по СНиПу (см. табл.3.25), то следует увеличить его до требуемой величины Цmin.

4. Расход заполнителей на 1 м3бетона определяют по следующим формулам:

; (3.15)

, (3.16)

где Щ, П, Ц и В – расходы соответственно щебня, песка, цемента и воды в кг на 1 м3бетона;- коэффициент раздвижки зерен щебня раствором;Vп– пустотность щебня в долях единицы;щ,пиц– истинные плотности соответственно щебня, песка и цемента, кг/дм3;ощ– насыпная плотность щебня, кг/дм3.

Таблица 3.24. Ориентировочные расходы воды на 1 м3бетона

Удобоукладываемость бетонной смеси

Наибольший размер зерен заполнителя, мм

Гравий

Щебень

Осадка конуса, см

Жесткость, с

10

20

40

70

10

20

40

70

0

0

0

0

4 и менее

5-9

10-15

16 и более

31 и более

21-30

11-20

5-10

1-4

-

-

-

150

160

165

175

190

200

215

225

135

145

150

160

175

185

205

220

125

130

135

145

160

170

190

205

120

125

130

140

155

165

180

195

160

170

175

185

200

210

225

235

150

160

165

175

190

200

215

230

135

145

150

160

175

185

200

215

130

140

145

155

170

180

190

205

Примечание: 1.Таблица составлена для средних песков с водопотребностью 7%. При применении крупного песка с водопотребностью менее 7% расход воды уменьшается на 5 дм3на каждый процент снижения водопотребности; при применении мелкого песка с водопотребностью более 7% расход воды увеличивается на 5 дм3на каждый процент увеличения водопотребности. 2. При применении пуццолановых цементов расход воды увеличивается на 15...20 дм3. 3. При расходе цемента свыше 400 кг/м3расход воды увеличивается на 10 дм3на каждые 100 кг цемента.

Таблица 3.25. Минимальный расход цемента Цminдля получения нерасслаиваемой плотной бетонной смеси

Вид смеси

Наибольшая крупность заполнителя, мм

10

20

40

70

Особо жесткая (Ж20 с)

Жесткая (Ж= 10- 20 с)

Малоподвижная ((Ж= 5-10 с)

Подвижная (ОК= 1-10 см)

Очень подвижная (ОК= 10-16 см)

Литая (ОК> 16 см)

160

180

200

220

240

250

150

160

180

200

220

230

140

150

160

180

200

210

130

140

150

160

180

190

Коэффициент раздвижки для жестких бетонных смесей следует принимать в пределах 1,05-1,15, в среднем – 1,1; для пластичных смесейпринимают в соответствии с табл.3.26.

Таблица 3.26. Оптимальные значения коэффициента для подвижных бетонных смесей

Расход цемента

Оптимальные значения коэффициента при В/Ц

0,4

0,5

0,6

0,7

0,8

250

300

350

400

500

-

-

1,32

1,4

1,5

-

1,3

1,38

1,46

1,56

1,26

1,36

1,44

-

-

1,32

1,42

-

-

-

1,38

-

-

-

-

Примечание: 1. При других Ц и В/Ц коэффициент находят интерполяцией.

2. Если водопотребность песка более 7%, коэффициент уменьшают на 0,03 на каждый процент увеличения водопотребности; если водопотребность песка менее 7%, коэффициентувеличивают на 0,03 на каждый процент снижения водопотребности.

Таким образом получают расчетный состав бетона в виде расхода материалов Ц, В, П и Щ (кг) для получения 1 м3или 1000 дм3бетона.

Расчетная плотность бетонной смеси (кг/м3) составит

бс= Ц + В + П + Щ . (3.17)

Корректирование состава бетона по пробному замесу

После корректирования удобоукладываемости бетонной смеси на пробном замесе определяют фактические расходы сырьевых материалов на пробный замес. Фактические расходы сырьевых материалов на 1 м3бетона рассчитывают по формулам:

; (3.18)

; (3.19)

; (3.20)

, (3.21)

где Цзф, Взф, Пзфи Щзф– фактические расходы сырьевых материалов на пробный замес, кг;Vзф– фактический объем пробного замеса, дм3.

, (3.22)

где бсф– фактическая плотность бетонной смеси, кг/дм3(не должна отличаться от расчетной плотности более чем на 2%).

После заданного срока твердения контрольные образцы бетона испытывают на сжатие. Если фактическая прочность бетона отличается от заданной более чем на 15% в ту и другую сторону, то следует внести коррективы в состав бетона. Для повышения прочности увеличивают расход цемента, т.е. Ц/В; в противном случае – уменьшают расход цемента и соответственно Ц/В.

Определение полевого (производственного) состава бетона

Полевой состав бетона рассчитывают с учетом влажности заполнителей по формулам:

Цп=Цф ; (3.23)

; (3.24)

; (3.25)

, (3.26)

где Wпи Wщ– влажности песка и щебня, %.

Определение расходов материалов на замес бетоносмесителя

Расходы материалов на замес бетоносмесителя рассчитывают по формулам:

; (3.27)

; (3.28)

; (3.29)

, (3.30)

где – объем бетонной смеси, получаемой из одного замеса бетоносмесителя, дм3.

, (3.31)

где – емкость бетоносмесителя по загрузке, дм3;– коэффициент выхода бетона.

Коэффициент выхода бетона, который представляет собой степень уменьшения объема бетонной смеси по сравнению с суммарным объемом исходных материалов и обычно равен 0,6...0,7, вычисляют по формуле

. (3.32)

В задании на работу каждый студент получает исходные данные для предварительного расчета состава тяжелого бетона методом абсолютных объемов, а именно: требуемый класс или марку бетона по прочности, марку или активность цемента, характеристики удобоукладываемости бетонной смеси (подвижность или жесткость) и качества заполнителей для бетона (высококачественные, рядовые или пониженного качества), наибольшую крупность щебня или гравия, значения истинной и насыпной плотности основных компонентов, величину пустотности крупного заполнителя. Кроме того, в задании приводятся ситуационные данные: изменения расхода материалов в пробном замесе для корректировки удобоукладываемости бетонной смеси, ее фактическая плотность, значения влажности заполнителей в производственных условиях, емкость бетоносмесителя.

Ниже приводится пример расчета состава тяжелого бетона для оказания помощи в выполнении этих расчетов.

Исходные данные для расчета

Рассчитать состав тяжелого бетона с классом (маркой) по прочности на сжатие В_20_(М ____). Удобоукладываемость бетонной смеси по подвижности (жесткости) составляет ОК = _4_см (Ж = ______ с).

Исходные материалы: портландцемент: марка (активность) М _400_(= _39,2_ МПа), истинная плотностьц= _3,1_ кг/дм3, насыпная плотностьнц= _1,2_ кг/дм3; песоксредней крупности: истинная плотностьп= _2,65_кг/дм3, насыпная плотностьнп= _1,6_ кг/дм3, водопотребность _5_%;щебень, гравий (нужное подчеркнуть): истинная плотностьщ= _2,7_ кг/дм3, насыпная плотностьнщ= _1,45_ кг/дм3, наибольшая крупность НК = _40_ мм, пустотностьVщ= _0,465_ в долях единицы.

Для получения заданной подвижности (жесткости) в пробном замесе увеличили расход воды и цемента(заполнителей) на 10 %.Фактическая плотность бетонной смеси составилабсф=2460кг/м3. Влажность песка и крупного заполнителя в производственных условиях равна соответственноWп= 5_% иWщ= 3_%. Емкость бетоносмесителя по загрузке 500 дм3.

Результаты расчета

1. Расчет предварительного состава бетона.

Определение требуемой прочности

28,3 МПа.

Определение среднего уровня прочности – округляем в большую сторону до ближайшей марки М 300, т.е.Rб=30МПа.

Определение водоцементного отношения

а) для обычных бетонов (=_30 МПа= _47,04_ МПа)

0,562.

б) для высокопрочного бетона (= _____= _____ МПа)

= ______ .

Определение расхода воды – по таблице 3.21 для подвижности(жесткости) ОК = 4 см (Ж = ______ с) и наибольшей крупностищебня(гравия) НК = _40_ мм, т.е. В = _175_ дм3.

Коррекция расхода воды, исходя из водопотребности песка 5%, – уменьшение на 10 дм3 , т.е. В = _165_ дм3.

Определение расхода цемента

294кг.

Если расход цемента на 1 м3бетона окажется меньше допускаемого по СНиПу (см. табл.3.22) Цmin= _180_ кг, то следует увеличить его до требуемой величины Цmin. Окончательно Ц = _294_ кг.

Определение расхода щебня

1265 кг.

Определение расхода песка

720кг.

В результате расчета получен предварительный состав бетонной смеси,

кг/м3:

Цемент

Вода

Песок

Щебень

В/Ц

294

165

720

1265

0,561

Расчетная плотность бетонной смеси (кг/м3) составляет

бс= Ц + В + П + Щ = 289 + 165 + 724 + 1265 =2444кг/м3.

2. Корректирование состава бетона по пробному замесу.

Состав бетона, полученный расчетом, уточняется на пробных замесах и по результатам испытаний контрольных образцов.

Объем пробного замеса составляет ___50____ л.

studfiles.net

определение, характеристики по ГОСТ, цена добавок

Назначение бетона и область его применения зависят не только от показателя прочности, но и от марки и класса бетона по морозостойкости и водопроницаемости. Каждая из этих характеристик имеет маркировку. Благодаря ей определяют, какие эксплуатационные возможности есть у бетона конкретной марки, и для каких целей его можно подбирать. Так, например, растворы с низкой маркой ни в коем случае нельзя использовать в местах с повышенной влажностью и в холоде, так как они быстро начнут разрушаться.

Что такое морозостойкость и что на нее влияет?

Морозостойкость бетона – это характеристика, показывающая, сколько циклов замораживания и оттаивания он способен выдержать, не потеряв больше 5% своей прочности. Срок эксплуатации любого бетонного или железобетонного сооружения напрямую зависит от способности стройматериала не менять свои свойства при многократном замораживании и оттаивании. Это параметр для определения области использования бетона. Можно ли применять состав для бетонирования фундамента дома или создания опор мостов.

Также от чего зависит морозостойкость, так это от структуры материала. Чем больше в нем пор, тем ниже его способность переносить низкие температуры и разморозку. Если он втянул в себя много воды, то при замораживании вода начинает замерзать и увеличиваться в размерах. Тем самым она разрушает бетон изнутри. С каждым замораживанием бетонный фундамент или другая конструкция все больше деформируется и теряет все свои характеристики. К тому же вода доходит до арматурного каркаса, из-за чего начинается процесс его коррозии.

Для определения марки морозостойкости бетонной смеси существует несколько способов, установленных по ГОСТ:

  • базовое;
  • ускоренное многократное;
  • ускоренное однократное.

Для проверки используется бетон в виде куба со сторонами 100-200 мм. Он подвергается множеству циклов замораживания и оттаивания при температурах -18 и +18°С. После тестов проверяется его прочность. Если этот показатель не изменился, значит, бетон соответствует заявленной марке. Если результаты базовых испытаний отличаются от ускоренных тестов, то правильным считается результат базовой проверки.

По ГОСТ морозостойкость бетона обозначается буквой F, водопроницаемость – W, прочность – В или М. После буквы следует число, например, F100, F250, указывающее максимальное количество циклов, которое может выдержать материал после многократного замораживания и оттаивания. Марка морозостойкости состава для бетонирования находится в диапазоне F25-F1000.

Таблица соответствий морозостойкости и марки по прочности:

Марка по прочности Морозостойкость
М100-150 F50
М200-250 F100
М300-350 F200
М400 F300
М450-600 F200-F300

Стоимость добавок и как повысить морозостойкость

Чтобы повысить устойчивость бетона к низким температурам или уменьшить водопроницаемость, используются различные добавки. Наиболее распространенными являются поверхностно-активные вещества, газообразующие и воздухововлекающие. Первый тип добавок делает бетонный состав более плотным. Происходит это благодаря уменьшению скорости затвердевания, в итоге цемент полностью успевает пройти процесс гидратации.

Второй тип добавок в бетон для морозостойкости создает шаровидные поры. Если он втягивает в себя воду, то при ее замерзании и расширении она не сможет разрушить его. Под давлением вода вытесняется в эти ячейки. В них кристалл льда, расширяясь, не сможет повредить структуру бетона за счет ее большой величины.

Добавки делятся на 2 вида:

  • ускоряющие процесс схватывания;
  • понижающие температуры замерзания воды.

Второй тип понижает температуру замерзания жидкости до -10°С. В итоге процесс затвердевания бетонной смеси будет проходить так же, как и при плюсовой температуре. К таким добавкам относятся нитрит натрия, растворы аммиака и многое другое. Не рекомендуется использовать добавки для бетонных работ в зимнее время, если температура воздуха ниже -30°С (зависит от состава).

Любые добавки для повышения морозостойкости бетона нужно добавлять только строго по инструкции производителя. Если влить слишком много, то могут ухудшиться все характеристики фундамента или другой бетонной конструкции, в том числе и прочность. Также не следует приобретать жидкости по низким ценам, так как они могут быть некачественными и только понизят свойства и марку бетона.

Таблица с ценами добавок разных видов и производителей:

Наименование Объем, л Цена, рубли
ПМД Элеосстрой 20 450
Frost-Hardy 20 320
Гидротэкс-ПМД 5 450
Формиат кальция 25 кг 1065
Русеан 10 125
С-3 20 360
Конкорд ОСТ 30 кг 630
Фаворит 20 кг 620

Помимо использования добавок повысить морозостойкость бетонного состава можно, применяя цемент более высоких марок. Чем он прочнее, тем выше показатель морозоустойчивости. Понижение соотношения воды к цементу также увеличивает эту характеристику.

Для обычного строительства достаточно бетона для фундамента и других конструкций с маркой морозостойкости F50-F200. Если бетонное сооружение будет находиться в постоянном контакте с водой и в грунте, то выбираются растворы для бетонирования с высоким показателем этой характеристики.

Выбирая марку бетонной смеси, следует точно определить, в каких условиях она будет использоваться (климат, нагрузка и так далее). Чем выше марка, тем плотнее и тем устойчивее ко всем воздействиям бетонный состав. Если применить бетон не по назначению, то уже через один или два года в нем появятся дефекты. Конструкция начнет крошиться и растрескиваться.

stroitel-lab.ru

Способ определения морозостойкости цементных материалов

 

Использование: в процессе контроля показателей качества строительных пористых материалов, изготавливаемых на основе применения цементобетонов, растворов, цементного камня и асбестоцемента. Сущность изобретения: изготавливают контрольные и основные образцы, насыщают их водой при сжатии контрольных образцов после насыщения водой, а основных после одноразового замораживания. Затем определяют капиллярную пористость испытуемого материала и показатель повышения прочности при замораживании для данной капиллярной пористости, находят максимальную и минимальную морозостойкость и максимальный и минимальный показатель повышения прочности материала при замораживании для капиллярной пористости испытуемого материала по статистически установленной зависимости морозостойкости от их капиллярной пористости. Морозостойкость цементных материалов рассчитывают по формуле. 1 ил.

Изобретение относится к промышленности строительных материалов, в частности к контролю качества бетонов, растворов и цементного камня.

Известен способ определения морозостойкости бетона по капиллярной пористости, согласно которому экспериментально определяют степень гидратации цемента в бетоне, вычисляют по данным о составе бетона и степени гидратации цемента капиллярную пористоть бетона и по значениям капиллярной пористости находят морозостойкость бетона на графике заранее установленной усредненной зависимости между морозостойкостью бетона и его капиллярной пористостью.

Недостатком способа является неучет водоснабжения бетона конкретного состава, так как известно, что при одной и той же капиллярной пористости бетоны обладают различным водоснабжением, соответственно различной льдистостью при замораживании, а следовательно, и различной морозостойкостью. По этой причине отклонения определяемой по данному способу морозостойкости от ее фактического значения могут достигнуть 30-100% Отклонения, как правило, тем больше, чем меньше морозостойкость.

Наиболее близким к предлагаемому является способ определения морозостойкости цементных материалов, включающий изготовление контрольных и основных образцов, насыщение их водой, испытание на прочность при сжатии контрольных образцов в насыщенном водой состоянии.

Недостатки этого способа высокая энерго- и трудоемкость, обусловленная необходимостью изготовления значительного количества образцов и их многоцикловыми испытаниями в мощных морозильных камерах, а также его большая длительность, которая из-за многоцикловых испытаний достигает нескольких месяцев, а при испытании высокоморозостойких бетонов до одного года.

Задача изобретения снижение энерго- и трудоемкости и длительности определения морозостойкости цементных материалов.

Задача достигается тем, что в способе определения морозостойкости цементных материалов, включающем изготовление контрольных и основных образцов, насыщение их водой, прочность при сжатии контрольных образцов в насыщенном водой состоянии, насыщенные водой основные образцы подвергают одноразовому замораживанию и испытывают на прочность при сжатии в замороженном состоянии, определяют капиллярную пористость испытуемого материала, находят показатель повышения прочности испытуемого материала при замораживании для данной капиллярной пористости, по статически установленной зависимости морозостойкости от их капиллярной пористости находят максимальную и минимальную морозостойкость и максимальный и минимальный показатель повышения прочности материала при замораживании для капиллярной пористости испытуемого материала, а морозостойкость цементных материалов рассчитывают по формуле: Mi= Mmax+ , (1) где Мi искомая морозостойкость материала, циклы; Мmax, Mmin максимальная и минимальная морозостойкость материала для данной капиллярной пористости, соответственно, циклы; Кi показатель повышения прочности испытуемого материала при замораживании для данной капиллярной пористости Ki= , где Rki, Roi прочность материала в образцах контрольных и основных, соответственно, отн.

Кmax, Kmin максимальный и минимальный показатель повышения прочности материала при замораживании для данной капиллярной пористости, отн.

На чертеже представлено графическое изображение шкалы морозостойкости.

Из графика, построенного на основе статистической обработки экспериментальных данных, следует, что с повышением капиллярной пористости цементных материалов их морозостойкость понижается, а пористость в замороженном состоянии возрастает. Каждому значению капиллярной пористости соответствуют диапазоны значений морозостойкости и прочности, в которых размах этих величин составляет 20-50% для высокоморозостойких и 100-300% для низкоморозостойких материалов. Из графика следует также, что при постоянной капиллярной пористости материала максимальному значению его морозостойкости отвечает минимальное значение прочности в замороженном состоянии и наоборот. Относительно одинаковое изменение указанных диапазонов (Мmax Mmin) (Kmax Kmin) const по мере изменения капиллярной пористости позволяет по экспериментально определенному показателю прочности замороженного материала Ki= и его капиллярной пористости, определять соответствующую морозостойкость с помощью интерполяционной зависимости 1.

Для определения капиллярной пористости измеряют контракцию материала за время его твердения с момента уплотнения смеси в образцах и до начала испытаний на морозостойкость, а также используют следующую зависимость: Пki= 100% (2) где Пki капиллярная пористости материала, i объем воды затворения в объеме смеси материала за вычетом водоотделения при уплотнении смеси или водопоглощения ее пористыми заполнителями, л; Vi объем пор пористого заполнителя в объеме смеси материала, л; Vi объем смеси материала, л; Vi контракция материала в объеме Vi, обусловленная гидратацией цемента к сроку его испытаний на морозостойкость, л;А стехиометрический коэффициент контракции, принимаемый для различных типов цемента в диапазоне от 4,1 до 6, отн.

Способ осуществляют следующим образом.

Проводят ускоренное определение морозостойкости бетона семи составов на портландцементе марки 400 Воскресенского завода, гранитном заполнителе фракции 5-25 мм и кварцевом речном песке с модулем 1,6. Из смесей каждого состава изготавливают по 6 образцов кубов размером 100 х 100 x х 100 мм (по три контрольных и основных). Образцы хранят в течение стандартного срока 28 сут при 202оС и относительной влажности 100%Все образцы подвергают стандартному водонасыщению, после чего контрольные образцы испытывают на одноосное сжатие, определяют Rki, а основные образцы подвергают однократному замораживанию при 20оС в течение 5 ч. Затем основные образцы в замороженном состоянии испытывают на одноосное сжатие, определяют Roi. Для всех составов вычисляют значения коэффициентов повышения прочности бетона при замо- раживании Кi.

Рассчитывают капиллярную пористость Пki по формуле и данным о составах бетона и его контракции.

Значения Кi и Пki и найденные из шкалы морозостойкости соответствующие значения величин Мmax, Mmin, Kmax и Kmin используют для расчета морозостойкости бетона по формуле 1.

Результаты определения приведены в таблице.

СПОСОБ ОПРЕДЕЛЕНИЯ МОРОЗОСТОЙКОСТИ ЦЕМЕНТНЫХ МАТЕРИАЛОВ, включающий изготовление контрольных и основных образцов, насыщение их водой, испытание на прочность при сжатии контрольных образцов в насыщенном водой состоянии, отличающийся тем, что насыщенные водой основные образцы подвергают одноразовому замораживанию и испытывают их на прочность при сжатии в замороженном состоянии, определяют капиллярную пористость испытуемого материала, находят показатель повышения прочности испытуемого материала при замораживании для данной капиллярной пористости, по статистически установленной зависимости морозостойкости от их капиллярной пористости находят максимальную и минимальную морозостойкость и максимальный и минимальный показатель повышения прочности материала при замораживании для капиллярной пористости испытуемого материала, а морозостойкость цементных материалов рассчитывают по формулегде Mi искомая морозостойкость материала, циклы;Mmax, Mmin максимальная и минимальная морозостойкость материала для данной капиллярной пористости, соответственно, циклы;Ki показатель повышения прочности испытуемого материала при замораживании для данной капиллярной пористости,где Rкi, Roi- прочность материала в образцах контрольных и основных соответственно;Kmax, Kmin максимальный и минимальный показатели повышения прочности материала при замораживании для данной капиллярной пористости.

Рисунок 1, Рисунок 2

www.findpatent.ru


Смотрите также