Гидратация цементов как химический процесс. Фазовый состав продукции твердения. Гидратация цемента формула


2. Какие химические соединения возникают при гидратации портландцемента и как они влияют на свойства цементного камня?

При затворении портландцемента водой образуется пластичное клейкое тесто, постепенно густеющее и переходящее в камневидное состояние. Превращение цементного теста в камневидное тело обусловлено сложными химическими и физико-химическими процессами взаимодействия клинкерных минералов с водой, в результате которых образуются новые гидратные соединения, практически нерастворимые в воде (табл. 2).

Таблица 2

Большинство клинкерных минералов по классификации Нараи-Сабо относится к двойным оксидам. В них существует связь Са-О-Ме1, где Ме1 – более электроотрицательный металл, чем кальций. Степени ионности здесь взаимосвязаны. С увеличением ε1, начиная от ε, т.е. от электроотрицательности оксида кальция, возрастает степень ионности связи Са-О. При ε1 - ε > 1 двойной оксид переходит в соль с типично ионным механизмом растворения в воде под влиянием прямой гидратации.

Каждая фаза клинкера вступает в реакции гидратации с водой, образуя с характерной для нее скоростью новые соединения. Типичными реакциями, характерными для твердения портландцемента и других вяжущих веществ, являются реакции гидратации, протекающие с присоединением воды. Они могут идти без распада основного вещества или сопровождаться его распадом (реакции гидролиза). Процесс твердения портландцемента в основном определяется гидратацией силикатов, алюминатов и алюмоферритов кальция.

Для понимания процесса гидратации портландцемента в целом необходимо рассмотреть отдельно гидратацию каждого из основных клинкерных минералов ПЦ.

Продукты гидратации

Трехкальциевый силикат. Трехкальциевый и двухкальциевый силикаты составляют 80-90 % от всей массы клинкера. В присутствии ограниченных количеств воды реакция между С3S и водой может быть представлена следующим образом [1]:

3СаО•SiO2 + xh3O → yСаО•SiO2•(x+y-3)h3O + (3-y)Ca(OH)2

или более конкретно:

2(3СаО•SiO2) + 7Н2О → 3СаО•2SiO2•4Н2О + 3Ca(OH)2.

Приведенные выше уравнения приблизительны, поскольку нелегко определить состав С-S-Н (низкоосновные, высокоосновные), кроме того имеются проблемы, связанные с определением Ca(OH)2. В полностью гидратированном цементе или С3S 60-70% твердой фазы состоит из С-S-Н. Он плохо закристаллизован, содержит частицы коллоидных размеров, показывает два размытых небольших пика на рентгенограмме. Состав фазы С-S-Н может быть изменен с помощью добавок.

Двухкальциевый силикат. При гидратации С2S, как и С3S, имеются неопределенности, связанные с нахождением стехиометрического состава фазы С-S-Н; гидратация двухкальциевого силиката может быть представлена следующим уравнением:

2(2СаО•SiO2) + 5 Н2О → 3СаО•2SiO2•4Н2О + 3Ca(OH)2.

Количество 3Ca(OH)2, образующегося в результате такой реакции, меньше, чем при гидратации С3S. Фаза двухкальциевого силиката гидратируется намного медленнее, чем фаза трехкальциевого силиката.

Повышенную реакционную способность С3S объясняют следующими причинами: в С3S координационное число Са2+ выше 6; координация Са2+ нерегулярна; в кристаллической решетке С3S имеются пустоты (дефекты структуры).

Большое количество подробных исследований системы СаО - SiO2 - h3O, а также гидратации С3S и β-С2S с добавками и без них при самых разнообразных условиях привели к обозначению их продуктов как С-S-Н (I), С-S-Н (II), тоберморит (G) и, наконец, С-S-H. Заметные различия в морфологии, а также в рентгенограммах позволяют установить разницу между С-S-Н (I) и С-S-Н (II): С-S-Н (I) с отношением С/S < 1,5 представляет собой слоистый гидросиликат кальция, а С-S-Н (II) с отношением С/S > 1,5 – в основном волокнистый гидросиликат кальция.

Отношения С/S и Н/S могут колебаться в пределах соответственно от 1,5 до 3 и от 1 до 3,84. В общем увеличение отношения С/S ведет к увеличению отношения Н/S. Различия могут быть объяснены неодинаковыми условиями гидратации, а также методами определения свободной гидроокиси кальция, связанной воды и непрореагировавших силикатов кальция. Что касается состава рассматриваемых фаз, то чрезвычайно важно учитывать, что С-S-H - фазы могут включать различные посторонние ионы. До 1/6 двуокиси кремния может быть замещено сульфатом, алюминием или железом. При этом 74% алюминия, 50% железа и 100% сульфата могут замещать SiO2, а остальные доли алюминия и железа могут замещать ионы кальция. Щелочи, оксид магния и хлорид-ион могут входить в С-S-Н-фазы, что ведет к изменению морфологии, удельной площади поверхности и отношений С/S и Н/S и, в конце концов, к изменению прочности.

Наиболее заметное падение прочности затвердевшего цементного теста у образцов с самым высоким содержанием сульфата, равным 3%: их прочность составляет 56% прочности образцов, не содержащих сульфатов.

Гидросиликаты кальция, образующиеся из С3S и β-С2S, характеризуются отношениями С/S, лежащими в пределах от 1,5 до 3 при нормальных температуре и давлении и не слишком высоких значениях В/Т. Морфология и площадь поверхности этих гидратов могут изменяться при включении посторонних ионов, что в конечном счете приводит к изменению скорости гидратации и механических свойств.

Трехкальциевый алюминат. Так как рядовой белый портландцемент является высокоалюминатным (содержание С3А до 13%), то рассмотрение гидратации данной является очень важной для изучения гидратации белого цемента в целом.

Влияние С3А весьма заметно на начальной стадии гидратации. Он обычно ответственен за феномен «ложного» схватывания; образование различных гидратов алюминатов кальция, карбо- и сульфоалюминатов также имеет место при реакциях С3А. Большие количества С3А могут повлиять на долговечность смеси.

Трехкальциевый алюминат реагирует с водой, образуя С2АН8 и С4АН13 (гексагональные фазы). Эти продукты термодинамически нестабильны, поэтому без стабилизации или добавок они переходят в фазу С3АН6 (кубическая фаза). Соответствующие уравнения:

2 С3А + 21Н → С4АН13 + С2АН8;

С4АН13 + С2АН8 → 2 С3АН6 + 9Н.

В насыщенном растворе Ca(OH)2 С2АН8 реагирует с Ca(OH)2, образуя в зависимости от условий С4АН13 или С3АН6. Кубическая форма (С3АН6) может образоваться и в результате непосредственной гидратации С3А при повышенных температурах.

При нормальных условиях гидратации камень из С3А дает меньшую прочность, чем из силикатных фаз, вследствие образования кубической фазы С3АН6.

При определенных условиях гидратации, т.е. при низких В/Ц и высокой температуре, прямое образование С3АН6 (приводящее к возникновению непосредственных связей между частицами) может существенно повысить прочность. В портландцементе гидратация фазы С3А контролируется добавлением гипса. Таким образом снимается «ложное схватывание».

Фаза С3А реагирует с гипсом в течении нескольких минут, образуя эттрингит,

С3А + 3СŜН2 + 26Н → С3А•3СŜН32.

После того как весь гипс перейдет в эттрингит, избыток С3А вступает в реакцию с эттрингитом, образуя низкосульфатную форму гидросульфоалюмината кальция,

С3А•3 СŜН32 + 2С3А + 4Н → 3(С3А•3 СŜН12).

Гипс – более эффективный замедлитель гидратации С3А, чем известь; вместе они еще более эффективны, чем каждый в отдельности.

Ферритная фаза. Фаза С4АF дает в целом те же продукты гидратации, что и С3А, но при более медленном протекании реакции. В присутствии воды образуются аморфные С2(А, F)Н6 или С4(А, F)Н13 и (А, F)Н3:

Четырехкальциевый алюмоферрит при действии воды гидролитически расщепляется с образованием шестиводного трехкальциевого алюмината и гидроферрита кальция по схеме:

4СаОAl2O3Fe2O3 + mh3O → ЗСаО•А12О3•6Н2О + CaO-Fe2O3-nh3O

Однокальциевый гидроферрит, взаимодействуя с гидроксидом кальция, который образовался при гидролизе C3S, переходит в более основный гидроферрит кальция 3(4)CaOFe2O3nh3O. Гидроалюминат связывается добавкой гипса, а гидроферрит входит в состав цементного геля.

В цементе в присутствии гипса С4АF реагирует значительно медленнее, чем С3А.

При гидратации алюминатных и алюмоферритных фаз в составе портландцемента образуются продукты трех типов с совершенно различной морфологией и кристаллографией.

1. В гексагонально-призматических фазах, сходных с эттрингитом, глинозем может быть полностью или частично замещен железом или другими трехвалентными ионами, а сульфат кальция – хлоридом, сульфидом или гидроокисью кальция. Эти фазы, трудно различимые с помощью рентгеновского дифракционного анализа, можно обозначить как АFt-фазы ( трехсульфатный гидросульфоалюмоферрит кальция).

2. В гексагональных пластинчатых гидроалюминатах кальция типа С4АН19 окись алюминия может замещаться железом или другими трехвалентными ионами, в то время как сульфат кальция может быть полностью или частично замещен хлоридом, сульфидом или гидроокисью кальция. Эти фазы называются АFm-фазами (моносульфатный гидросульфоалюмоферрит кальция). Все эти фазы и твердые растворы трудно идентифицировать с помощью рентгеновского дифракционного анализа.

3. Существует, также, серия твердых растворов, образуемых четырьмя гидрогранатами (С3АН6, С3FH6, С3АS3 и С3FS3). Вопрос о возможности образования чистого С3FH6 до настоящего времени окончательно не решен. Кубические гидрогранаты редко образуются при гидратации портландцемента при нормальной температуре. Они являются равновесными продуктами только в условиях высокой температуры или при большой продолжительности гидратации.

При твердении цемента на воздухе рассмотренные выше реакции дополняются карбонизацией гидроксида кальция, протекающей на поверхности цементного камня.

Портландцемент. Изучение гидратации чистых цементных составляющих не может быть непосредственно применено к цементам вследствие сложности протекающих реакций. В портландцементе минералы состоят не из чистых фаз: они являются твердыми растворами, содержащими Аl, Mg, Na и т.д.

На гидратацию С3А, С4АF, С3S и С2S в цементе влияет изменение количества Са2+ или ОН- в гидратном растворе. На гидратацию индивидуальных фаз оказывает влияние также присутствие щелочей в цементе. По их влиянию на скорость гидратации портландцемента в ранние сроки твердения минералы цемента можно расположить в следующем порядке: С3А > С3S > С4АF > С2S. Скорость гидратации составляющих портландцемента зависит от размеров кристаллов, их дефектности, размеров частиц и их распределения по размерам, скорости охлаждения клинкера, площади поверхности, наличия добавок, температуры и т.д [1].

В гидратированном цементе образуются такие продукты гидратации, как гель С-S-Н, Ca(OH)2, эттрингит (А, F-3-фазы), моносульфатная фаза (А, F-1-фаза), гидрогранаты и, возможно, аморфные фазы с высоким содержанием ионов (Al3+ и SO24-).

Фаза С-S-Н представлена в цементном камне аморфными или полукристаллическими гидратами силикатов кальция. Состав С-S-Н меняется в зависимости от времени гидратации. Через 1 сут. отношение С/S близко к 2, а после нескольких лет гидратации данное соотношение составляет 1,4-1,6. С-S-Н может захватывать значительные количества ионов Al3+, Fe3+ и SO24-.

В полностью гидратированном портландцементе Ca(OH)2 составляет около 20-25% твердого вещества. Кристаллы плоские или призматические, легко раскалываются. Они могут плотно срастаться с С-S-Н.

В эттрингите часть Al может быть в некоторой степени замещена Fe и поэтому он обозначается Al-Fe-три (три обозначает число молекул СŜ). AF-три фаза образуется в первые часы гидратации, что влияет на сроки схватывания. Через несколько дней лишь небольшие количества этой фазы могут оставаться в цементном камне.

Моносульфатная форма (AF-1) образуется в портландцементе после того как исчезнет AF-3. Эта фаза может составлять около 10% твердого вещества в зрелом цементном камне.

Количество гидрогранатов в цементной фазе менее 3%. Это соединения типа С3A2(ОН)12, в которых часть ионов алюминия замещена на Fe3+, а часть анионов ОН- - ионами SO24-, т.е. С3(А0,5F0,5)SН4. Эта фаза может присутствовать в цементном камне зрелого возраста. Гидрогранаты разлагаются углекислым газом с образованием СаСО3.

При твердении цемента на воздухе рассмотренные выше реакции дополняются карбонизацией гидроксида кальция, протекающей на поверхности цементного камня.

Необходимо отметить, что значения ΔZ298 многих реакций гидратации составляющих цемента имеют отрицательные величины (табл. 3), что обеспечивает самопроизвольный характер и высокую интенсивность этих процессов (реакции твердения вяжущих веществ протекают с образованием новых кристаллических фаз, выпадающих из пересыщенных по отношению к ним растворов).

Таблица 3

studfiles.net

Гидратация цемента — Википедия

  Скорость гидратации клинкерных минералов.[4]

Безводные минералы клинкера при реакции с водой превращаются в гидросиликаты, гидроаллюминаты и гидроферраты кальция. Все реакции являются экзотермическими, то есть протекают с выделением теплоты. На скорость гидратации влияют: степень помола цемента и его минеральный состав, количество воды, которой замешивается цемент, температура, введение добавок.[5] Степень гидратации зависит от водоцементного соотношения, и достигает своего максимального значения только через 1—5 лет.[6][~ 1] Степень гидратации определяется различными способами: по количеству Ca(OH)2, по тепловыделению, по удельному весу цементного теста, по количеству химически связанной воды, по количеству негидратированного цемента,[~ 2] либо косвенно по показателям прочности цементного камня.[7] Продукты гидратации различаются по прочности. Основными носителями прочности являются гидросиликаты кальция.[6] В процессе гидратации клинкеров C3S и C2S помимо гидросиликатов кальция образуется гашёная известь Ca(OH)2, сохраняющаяся в цементном камне и препятствующая коррозии стали внутри цементного камня.[8]

Уравнения реакций для четырёх основных клинкерных минералов выглядят следующим образом[9]:

Для трёхкальциевого силиката 3CaO⋅SiO2{\displaystyle {\ce {{3CaO.SiO2}}}}  (сокращённо C3S{\displaystyle {\ce {{C3S}}}} ):

2(3CaO⋅SiO2)+6h3O⟶3CaO⋅2SiO2⋅3h3O+3Ca(OH)2+502{\displaystyle {\ce {{2(3CaO.SiO2)}+ 6h3O -> {3CaO.2SiO2.3h3O}+ {3Ca(OH)2}+ 502}}}  Дж/г

Для двукальциевого силиката 2CaO⋅SiO2{\displaystyle {\ce {{2CaO.SiO2}}}}  (сокращённо C2S{\displaystyle {\ce {{C2S}}}} ):

2(2CaO⋅SiO2)+4h3O⟶3CaO⋅2SiO2⋅3h3O+Ca(OH)2+260{\displaystyle {\ce {{2(2CaO.SiO2)}+ 4h3O -> {3CaO.2SiO2.3h3O}+ {Ca(OH)2}+ 260}}}  Дж/г

Для трехкальциевого алюмината 3CaO⋅Al2O3{\displaystyle {\ce {{3CaO.Al2O3}}}}  (сокращённо C3A{\displaystyle {\ce {{C3A}}}} ):

3CaO⋅Al2O3+6h3O⟶3CaO⋅Al2O3⋅6h3O+867{\displaystyle {\ce {{3CaO.Al2O3}+ 6h3O -> {3CaO.Al2O3.6h3O}+ 867}}}  Дж/г

Для четырёхкальциевого алюмоферрита 4CaO⋅Al2O3⋅Fe2O3{\displaystyle {\ce {{4CaO.Al2O3.Fe2O3}}}}  (сокращённо C4AF{\displaystyle {\ce {{C4AF}}}} ):

4CaO⋅Al2O3⋅Fe2O3+2Ca(OH)2+10h3O⟶3CaO⋅Al2O3⋅6h3O+3CaO⋅Fe2O3⋅6h3O+419{\displaystyle {\ce {{4CaO.Al2O3.Fe2O3}+ {2Ca(OH)2}+ 10h3O -> {3CaO.Al2O3.6h3O}+ {3CaO.Fe2O3.6h3O}+ 419}}}  Дж/г   Схема объёмных соотношений в цементном геле в зависимости от величины водоцементного отношения и степени гидратации. Цифрами обозначены: 1 — Негидратированный цемент. 2 — Объём твёрдой фазы. 3 — Объём гелевых пор. 4 — Объём усадочных пор. 5 — Объём капиллярных пор.[10]

При смешивании цемента и воды цементные частицы окружаются водой, которая составляет 50—70 объёмных процентов смеси. В результате химической реакции гидратации начинается образование иглообразных кристаллов. Спустя 6 часов образуется достаточное количество кристаллов и между цементными частицами формируются пространственные связи. Так происходит загустевание (схватывание) цементной смеси.[3] Процесс схватывания, вероятно, обеспечивается избирательной гидратацией клинкерных минералов C3A и C3S, а также развитием оболочек вокруг цементных зёрен и взаимной коагуляцией составных частей цементного теста.[11] Через 8—10 часов объём цементной смеси заполняет скелет иглообразных кристаллов, образованный преимущественно продуктами гидратации алюминатов C3A, поэтому такая структура называется алюминатной. С этого момента начинается застывание и набор прочности, которые связаны с формированием силикатной структуры, образующейся в процессе гидратации клинкерных минералов C3S и C2S. Результатом реакции силикатов и воды становятся очень малые кристаллы, объединяющиеся в гомогенную тонкопористую структуру, которая и определяет итоговую прочность цементного камня. Примерно через сутки силикатная структура начинает вытеснять алюминатную, а спустя 28 суток — полностью вытесняет её.[5] На практике формирование рыхлой алюминатной структуры из гидросиликата кальция в процессе схватывания отрицательно влияет на прочностные характеристики цементного камня. Поэтому в цементный клинкер вводится гипс, количество которого ограничивается допустимой концентрацией ангидрида серной кислоты SO3 в цементе по весу.[~ 3] Гипсовая добавка замедляет образование гидроалюмината кальция и каркас гидратированного цементного теста формируется за счёт гидросиликата кальция.[11]

Гидратация цемента в период схватывания характеризуется выделением теплоты: в начале схватывания происходит быстрый подъём температуры, а в конце схватывания наблюдается температурный максимум. Скорость схватывания находится в зависимости от температуры окружающей среды. При низких температурах схватывание замедляется. При повышении температуры скорость схватывания увеличивается, однако при значениях температуры выше 30 °C может наблюдаться обратный эффект.[11]

Для полной гидратации цементного зерна необходимо количество воды, составляющее 40 % от его массы. При этом из указанного количества воды 60 % (или 25 % от массы цемента) будут химически связаны с цементом, а 40 % (или 15 % от массы цемента) останутся в порах геля.[12] Средняя величина удельного веса продуктов гидратации в насыщенном водой состоянии составляет 2,16.[13] Та часть воды (25 % от массы цемента), которая вступает в химическую реакцию с цементом, претерпевает объёмную контракцию (сжатие) в процессе реакции, составляющую примерно 25 % от её объёма. В итоге образующийся цементный камень частично уменьшается в объёме. Этот процесс называется усадкой, а величина уменьшения объёма — объёмом усадки.[12]

  Упрощённая модель структуры цементного камня. Крупные чёрные точки — гелевые частицы, промежутки между ними — гелевые поры (величина которых преувеличена для наглядности), пространства окрашенные в голубой цвет — капиллярные пустоты.[14]

При полной гидратации цементного клея объём пор будет составлять примерно 28[15]—30[12] % от объёма образующейся структуры геля. При этом величина пористости геля в основном не зависит от водоцементного отношения смеси и степени гидратации, а является характерным показателем для марки цемента.[16] Размер гелевых пор составляет примерно 1,5—2[15] (1—3[17]) нм в диаметре.[~ 4] Часть общего объёма цементного теста, которая не заполнена продуктами гидратации, образует взаимосвязанную систему капиллярных пор, беспорядочно распределённых по всему цементному камню. Капиллярная пористость цементного камня находится в прямой зависимости от водоцементного отношения смеси и в обратной зависимости от степени гидратации. Чем больше величина водоцементного отношения, тем больше капиллярных пор. В то же время по мере роста степени гидратации цемента будет уменьшаться объём капиллярных пор. Размер капиллярных пор составляет примерно 1,27 мкм.[19]

Структурно продукты гидратаци представляет собой гель, а сам процесс гидратации классифицируется как гелеобразование.[5] В процессе гидратации значительно увеличивается площадь поверхности твёрдой фазы цементного геля, что влечёт за собой повышение адсорбции свободной воды. При этом сохраняется расход воды в реакциях гидратации. Следствием этих двух процессов становится самовысушивание — явление уменьшения относительной влажности в цементном тесте. Самовысушивание снижает степень гидратации, поэтому для нормального протекания процессов твердения цементного теста необходимо поддерживать уровень влажности, как одно из условий нормального набора прочности. Процесс самовысушивания также компенсируется избытком воды при затворении цементной смеси (при значениях водоцементного отношения 0,5 и более).[20]

ru-m.wiki.ng

Гидратация цементов как химический процесс. Фазовый состав продукции твердения

При гидратации алита протекает реакция, которая в общем виде может быть записана следующим образом:

3 CаO SiO2 + (3 ¸ x) h3O = (З¸x) Ca(OH)2 + x СаО y SiO2O m h3O.

Значения коэффициентов x, y, m меняются в зависимости от внешних условий протекании реакций гидратации, главным образом от температуры. Гидратация белита протекает по аналогичной схеме с образованием гидросиликатов того же состава:

2 CаO SiO2 + (2 + x) h3O = (2¸x) Ca(OH)2 + x СаО y SiO2O m h3O.

При нормальной температуре продуктом гидратации алита и белита является один и тот же гидросиликат, обозначаемый СН(П) или С2SН2. Кроме гидросиликата в достаточно большом количестве образуется кристаллический Са(OН)2, причем при гидратации алита его образуется значительно больше, чем при гидратации белита. При повышении температуры до 100-110°С образуется тот же гидросиликат СSН(П), но с более высоким содержанием оксида кальция. При 70-80°С основность (отношение числа молей CaO к SiO2) гидросиликатов достигает предельного значения, равного 2. Гидросиликат CSH(П) - первая гидросиликатная фаза, образующаяся при более высоких температурах. Затем он превращается в гидросиликат, обозначенный C2SH(А), или a - гидрат C2S. Температурный интервал устойчивости этого гидросиликата - I25 -175°С. При более высоких температурах он переходит в гидросиликат C2SH(С) (g - гидрат С2). При температурах, выше 160°C может образовываться гидросиликат C3Sh3. При температурах выше 125°С также образуется гидросиликат С2SН(B), называемый гиллебрандитом. Размеры гидросиликатов, образующихся при повышенных температурах, более крупные, чем размеры кристаллов, образующихся при низких температурах.

Таким образом, при гидратации силикатных клинкерных минералов образуется, главным образом, высокоосновные гидросиликаты кальция, имеющие мольное отношение Cao/SiO2 более 1,5. Однако эти гидросиликаты обладают большей растворимостью и высокой константой скорости растворения, поэтому в плане обеспечения долговечности крепи скважины они не являются оптимальными.

При повышенных температурах растворимость кремнеземистых компонентов возрастает, и растворенныйSiO2 связывает гидрооксид кальция с образованием, гидросиликатов пониженной основности. Уменьшение содержания свободного гидрооксида кальция в растворе также способствует снижению основности. Уменьшение содержания свободного гидрооксида кальция в растворе также способствует снижению основности продуктов твердения и повышению их долговечности и прочности. Поэтому для крепления интервалов с высокими температурами требуется введение в состав тампонажных портландцементов кремнеземсодержащих материалов, шлаков, золы, молотого песка и т.д.

Согласно схемы, предложенной Я. Скальни и Дж. Янгом, механизм гидратации трехкальциевого силиката представляется следующим образом: C2S реагируют c dодой сразу же при контактировании. Во время: индукционного периода происходит обмен ионов между раствором и твердым непрогидратированным веществом, способствуя автокаталитическому увеличению скорости реакции. При этом большое количество продуктов гидратации с низкой плотностью и увеличенным объемом по сравнению с негидратированной фазой осаждается на покрытую водой поверхность минерала. Это обусловливает общее увеличение пористости, системы, что, в свою очередь, снижает перенос ионов на поверхность раздела между твердым веществом и жидкостью, замедляя процесс гидратации. Этот период рассматривается как контролируемая диффузией стадия гидратации.

В начале, гидратации происходит реакции:

где: "C2S" это структура C3S .с, дефицитом гидрооксида кальция.

В конце индукционного периода - реакции:

В целом механизм гидратации разделен на пять отдельных стадий.

Стадия 1. При контакте С2 с водой имеет место гидролиз сопровождающийся переходом протона О2- в OH-, в и Са2+в Са2+ + а q. Гидролиз происходит в основном на активных участках. В результате перехода в раствор Са2+ на этих участках минерала образуется поверхностный слой продуктов реакции, представляющих собой группировки силикатных ионов и , связанных между собой водородными связями и несколькими ионами кальция. Образовавшийся аморфный слой имеет тенденцию к всасыванию воды и набуханию, подобно осмотическому процессу. Равновесие заряда поддерживается переходом ионов Са2+ и ОН- в раствор, компенсируя ионы Н+ имеющиеся в растворе при гидролизе воды. Между подвижным ионом - Са2+ и неподвижной поверхностью силикатные ионов образуют двойной электрический слой, обеспечивая хемосорбцию.

Стадия 2. Вследствие дальнейшего перевода в раствор ионов Са2+ и OН- с образовавшийся на 1 стадии поверхностный слой продолжает разрываться. Образующийся двойной электрический слой замедляет скорость его развития. Из находящихся в растворе групп атомов будут формироваться зародыши кристаллов Са(OН)2 или C-S-H.

Стадия 3. По мере перевода ионов в раствор, содержание их становится достаточные для роста зародышей кристаллов. Первоначально рост отмечается при пресыщении раствора относительно гидрооксида кальция. Вследствие возникающих больших сопротивлений через слой новообразованного диоксида кремния на поверхности образуются слаборазвитые кристаллы C-S-H.

Стадия 4 и 5. На этих стадиях продолжается дальнейший рост изообразныхкристаллов C-S-H. При этом образующиеся на ранее сформированных кристаллах C-S-H новые кристаллы будут отличаться по морфологии, поскольку содержание ионов в растворе меняется. Это и обуславливает наличие различных модификаций гидросиликатов.

Механизм гидратации b - С2S аналогичен и отличается в уменьшении степени пересыщения раствора ионами Са2+ относительно Са(ОН)2 и низкой экзотермией процесса гидратации.

Общий состав и морфология С - S - Н, формирующихся из b - С2S и C3S оказываются сходными. Низкая степень насыщения раствора гидрооксидом кальция при гидратации b - С2S обуславливает формирование более крупных кристаллов Са(ОН)2 по сравнении с кристаллами, образующимися при гидратации C3S.

Гидратация С3А. Процесс гидратации С3А определяется скоростью диффузии жидкой фазы через слой сформировавшихся в начальной стадии гидратов С4АН13 и С2АН8. Так как гидратация СА сопровождается большим выделением теплоты, указанные гидраты быстро переходят в С3АН6.

Образовавшиеся гидраты С4АН13, С4АС5Н12 и их твердые растворы создают изолирующий слой на поверхности зерен С3А, который резко замедляет, но не прекращает, переток реагирующих ионов и молекул воды. Этот поток не обеспечивает растворение нижнего слоя, контактирующего с поверхностью, и поэтому; последовательное образование С4АН13 истощает раствор, находящийся в контакте с зернами С3А относительно ионов Са2+, тем самым способствует осаждению Аl(ОН)3. Этот процесс выражается:

Разрушение изолирующего слоя вследствие превращения С4АН13 и С2АН8 в С2АН6 будет вызывать при высоком содержании в растворе ионов Са+ и ОН- также и разрушение, слоя Аl(ОН)3,что будет обуславливать дальнейшую гидратацию С3А. Последовательность этих реакций следующая:

;

;

.

Состав продуктов гидратации алюминатных составляющих цемента также зависит от температуры окружающей среды. При нормальной температуре взаимодействие с водой трехкальциевого алюмината происходит по схеме:

 

.

В реакцию вступает гидрооксид кальция, выделяющийся при гидратации силикатных минералов. При повышенных температурах (более 50 - 60°С) основным продуктом гидратации является шестиводный гидроалюминат:

.

При пониженных температурах (ниже 10° С) при гидратации алюминатов предпочтительно образование низкоосновных гидроалюминатов

и .

Гидратация алюмоферритной фазы. При температуре ниже 20°С гидратация алюмоферритов кальция сопровождается образованием гидрата четырехкальциевого алюмоферрита кальция.

При температурах свыше 20 °С данный кристаллогидрат превращается в кубический,

,

а при температурах выше 50°С только в кубический. Присутствующий в растворе гидрооксид кальция замедляет переход гексагональной формы кристаллогидрата в кубическую.

Реакции взаимодействия алюмоферритов кальция различного состава выражаются следующим образом:

Твердые растворы трехкальциевых гидроалюмоферритов кристаллизуются в кубической сингонии и по своей структуре подобны минералам гранатовой группы - гроссуляру и андрадиту .

При взаимодействии с водой полиминеральных цементов, содержащих силикаты, алюминаты и ферриты кальция, образуются твердые растворы гидроалюмоферритов и алюможелезистых гранатов по сложной системе:

В этих твердых растворах одна молекулаSiO2 замещается двумя молекулами Н2О и поэтому растворы называются гидрогранатами. Вся группа соединений имеет общую формулу:

или . Гидрогранаты повышают долговечность тампонажного камня, т. к. имеют большую стойкость ко многим видам пластовых вод.

Кроме указанных минералов портландцемент содержит в своем составе сульфат кальция в виде гипса, вводимого для замедления скорости схватывания цементного теста. Механизм замедления представляется следующим образом.

Продукт гидратации алюмината и алюмоферрита кальция - шестиводный гидроалюминат кальция в присутствии гипса образует гидросульфоалюминат кальция трехсульфатной формы по реакции:

,

который можно записать как . Это соединение называется эттрингитом и для него характерно сильное приращение объема и высокая удельная поверхность. Быстрообразующийся эттрингит покрывает зерна клинкерных минералов, затрудняя к ним доступ воды. Процесс гидратации замедляется. После того, как весь гипс расходуется на химическую реакцию и концентрация ионов в растворе понижается эттрингит становится термодинамически неустойчивым и переходит в моносульфатную форму гидросульфоалюмината кальция. Доступ воды к минералам клинкера открывается и процесс гидратации интенсифицируется.

Ферритные составляющие в присутствии гипса образуют гидросульфоферриты моно- и трехсульфатной формы, аналогичные гидросульфоалюминатам кальция с общими формулами:

и

При высоких температурах (выше 50°С) высокосульфатные формы указанных соединений переходят в моносульфатные, которые, в свою очередь, при температурах выше 100°С разлагаются с выделением гипса и гидрогранатов.

Изложенные ранее материалы позволяют заключить, что процесс гидратации, является частным случаем сольвации и представляет собой процесс взаимодействия веществ с водой, при котором молекулы воды присоединяются к веществу, не разрушаясь.

Образующиеся соединения определенного состава в этом случае называются кристаллогидратами. Гидратация вызвана в основном донорно - акцепторным, диполь - дипольным, ион - дипольным взаимодействием между частицами, а также образованием водородных связей.

Различают гидратацию твердых веществ с образованием гидратов, гидратацию оксидов, гидратацию электролитов в растворах, гидратацию молекул в растворах, а также гидратацию органических и высокомолекулярных соединений. В процессе гидратации происходит выделение тепла - теплота гидратации. Она вызвана смачиванием и реакцией.

В составе кристаллогидратов молекулы воды входят в виде индивидуальных частиц и поэтому в химических формулах воду обычно пишут отдельно, например, , и т.д.

Известные кристаллогидраты подразделяются на кристаллогидраты определенного состава и неопределенного. Во-первых на одну молекулу вещества приходится определенное количество молекул воды, например, . Для вторых характерно неопределенное число молекул воды, приходящихся на одну молекулу вещества, изменяющихся в зависимости от температуры, давления водяных паров в пространстве, концентрации растворенного вещества и т.д. Вода, находящаяся в составе кристаллогидратов, называется кристаллизационной. Она располагается в определенном порядке. Вода, заполняющая пустоты и пространства кристалла и удерживаемая им электрическими силами называется цеолитной. Ее удаление сопровождается разрушением кристалла. Вода, пошедшая на образование гидрооксидов называется конституционной. При их образовании происходит разложение молекул воды.

cyberpedia.su

Гидратация цемента — Википедия

  Скорость гидратации клинкерных минералов.[4]

Безводные минералы клинкера при реакции с водой превращаются в гидросиликаты, гидроаллюминаты и гидроферраты кальция. Все реакции являются экзотермическими, то есть протекают с выделением теплоты. На скорость гидратации влияют: степень помола цемента и его минеральный состав, количество воды, которой замешивается цемент, температура, введение добавок.[5] Степень гидратации зависит от водоцементного соотношения, и достигает своего максимального значения только через 1—5 лет.[6][~ 1] Степень гидратации определяется различными способами: по количеству Ca(OH)2, по тепловыделению, по удельному весу цементного теста, по количеству химически связанной воды, по количеству негидратированного цемента,[~ 2] либо косвенно по показателям прочности цементного камня.[7] Продукты гидратации различаются по прочности. Основными носителями прочности являются гидросиликаты кальция.[6] В процессе гидратации клинкеров C3S и C2S помимо гидросиликатов кальция образуется гашёная известь Ca(OH)2, сохраняющаяся в цементном камне и препятствующая коррозии стали внутри цементного камня.[8]

Уравнения реакций для четырёх основных клинкерных минералов выглядят следующим образом[9]:

Для трёхкальциевого силиката 3CaO⋅SiO2{\displaystyle {\ce {{3CaO.SiO2}}}}  (сокращённо C3S{\displaystyle {\ce {{C3S}}}} ):

2(3CaO⋅SiO2)+6h3O⟶3CaO⋅2SiO2⋅3h3O+3Ca(OH)2+502{\displaystyle {\ce {{2(3CaO.SiO2)}+ 6h3O -> {3CaO.2SiO2.3h3O}+ {3Ca(OH)2}+ 502}}}  Дж/г

Для двукальциевого силиката 2CaO⋅SiO2{\displaystyle {\ce {{2CaO.SiO2}}}}  (сокращённо C2S{\displaystyle {\ce {{C2S}}}} ):

2(2CaO⋅SiO2)+4h3O⟶3CaO⋅2SiO2⋅3h3O+Ca(OH)2+260{\displaystyle {\ce {{2(2CaO.SiO2)}+ 4h3O -> {3CaO.2SiO2.3h3O}+ {Ca(OH)2}+ 260}}}  Дж/г

Для трехкальциевого алюмината 3CaO⋅Al2O3{\displaystyle {\ce {{3CaO.Al2O3}}}}  (сокращённо C3A{\displaystyle {\ce {{C3A}}}} ):

3CaO⋅Al2O3+6h3O⟶3CaO⋅Al2O3⋅6h3O+867{\displaystyle {\ce {{3CaO.Al2O3}+ 6h3O -> {3CaO.Al2O3.6h3O}+ 867}}}  Дж/г

Для четырёхкальциевого алюмоферрита 4CaO⋅Al2O3⋅Fe2O3{\displaystyle {\ce {{4CaO.Al2O3.Fe2O3}}}}  (сокращённо C4AF{\displaystyle {\ce {{C4AF}}}} ):

4CaO⋅Al2O3⋅Fe2O3+2Ca(OH)2+10h3O⟶3CaO⋅Al2O3⋅6h3O+3CaO⋅Fe2O3⋅6h3O+419{\displaystyle {\ce {{4CaO.Al2O3.Fe2O3}+ {2Ca(OH)2}+ 10h3O -> {3CaO.Al2O3.6h3O}+ {3CaO.Fe2O3.6h3O}+ 419}}}  Дж/г   Схема объёмных соотношений в цементном геле в зависимости от величины водоцементного отношения и степени гидратации. Цифрами обозначены: 1 — Негидратированный цемент. 2 — Объём твёрдой фазы. 3 — Объём гелевых пор. 4 — Объём усадочных пор. 5 — Объём капиллярных пор.[10]

При смешивании цемента и воды цементные частицы окружаются водой, которая составляет 50—70 объёмных процентов смеси. В результате химической реакции гидратации начинается образование иглообразных кристаллов. Спустя 6 часов образуется достаточное количество кристаллов и между цементными частицами формируются пространственные связи. Так происходит загустевание (схватывание) цементной смеси.[3] Процесс схватывания, вероятно, обеспечивается избирательной гидратацией клинкерных минералов C3A и C3S, а также развитием оболочек вокруг цементных зёрен и взаимной коагуляцией составных частей цементного теста.[11] Через 8—10 часов объём цементной смеси заполняет скелет иглообразных кристаллов, образованный преимущественно продуктами гидратации алюминатов C3A, поэтому такая структура называется алюминатной. С этого момента начинается застывание и набор прочности, которые связаны с формированием силикатной структуры, образующейся в процессе гидратации клинкерных минералов C3S и C2S. Результатом реакции силикатов и воды становятся очень малые кристаллы, объединяющиеся в гомогенную тонкопористую структуру, которая и определяет итоговую прочность цементного камня. Примерно через сутки силикатная структура начинает вытеснять алюминатную, а спустя 28 суток — полностью вытесняет её.[5] На практике формирование рыхлой алюминатной структуры из гидросиликата кальция в процессе схватывания отрицательно влияет на прочностные характеристики цементного камня. Поэтому в цементный клинкер вводится гипс, количество которого ограничивается допустимой концентрацией ангидрида серной кислоты SO3 в цементе по весу.[~ 3] Гипсовая добавка замедляет образование гидроалюмината кальция и каркас гидратированного цементного теста формируется за счёт гидросиликата кальция.[11]

Гидратация цемента в период схватывания характеризуется выделением теплоты: в начале схватывания происходит быстрый подъём температуры, а в конце схватывания наблюдается температурный максимум. Скорость схватывания находится в зависимости от температуры окружающей среды. При низких температурах схватывание замедляется. При повышении температуры скорость схватывания увеличивается, однако при значениях температуры выше 30 °C может наблюдаться обратный эффект.[11]

Для полной гидратации цементного зерна необходимо количество воды, составляющее 40 % от его массы. При этом из указанного количества воды 60 % (или 25 % от массы цемента) будут химически связаны с цементом, а 40 % (или 15 % от массы цемента) останутся в порах геля.[12] Средняя величина удельного веса продуктов гидратации в насыщенном водой состоянии составляет 2,16.[13] Та часть воды (25 % от массы цемента), которая вступает в химическую реакцию с цементом, претерпевает объёмную контракцию (сжатие) в процессе реакции, составляющую примерно 25 % от её объёма. В итоге образующийся цементный камень частично уменьшается в объёме. Этот процесс называется усадкой, а величина уменьшения объёма — объёмом усадки.[12]

  Упрощённая модель структуры цементного камня. Крупные чёрные точки — гелевые частицы, промежутки между ними — гелевые поры (величина которых преувеличена для наглядности), пространства окрашенные в голубой цвет — капиллярные пустоты.[14]

При полной гидратации цементного клея объём пор будет составлять примерно 28[15]—30[12] % от объёма образующейся структуры геля. При этом величина пористости геля в основном не зависит от водоцементного отношения смеси и степени гидратации, а является характерным показателем для марки цемента.[16] Размер гелевых пор составляет примерно 1,5—2[15] (1—3[17]) нм в диаметре.[~ 4] Часть общего объёма цементного теста, которая не заполнена продуктами гидратации, образует взаимосвязанную систему капиллярных пор, беспорядочно распределённых по всему цементному камню. Капиллярная пористость цементного камня находится в прямой зависимости от водоцементного отношения смеси и в обратной зависимости от степени гидратации. Чем больше величина водоцементного отношения, тем больше капиллярных пор. В то же время по мере роста степени гидратации цемента будет уменьшаться объём капиллярных пор. Размер капиллярных пор составляет примерно 1,27 мкм.[19]

Структурно продукты гидратаци представляет собой гель, а сам процесс гидратации классифицируется как гелеобразование.[5] В процессе гидратации значительно увеличивается площадь поверхности твёрдой фазы цементного геля, что влечёт за собой повышение адсорбции свободной воды. При этом сохраняется расход воды в реакциях гидратации. Следствием этих двух процессов становится самовысушивание — явление уменьшения относительной влажности в цементном тесте. Самовысушивание снижает степень гидратации, поэтому для нормального протекания процессов твердения цементного теста необходимо поддерживать уровень влажности, как одно из условий нормального набора прочности. Процесс самовысушивания также компенсируется избытком воды при затворении цементной смеси (при значениях водоцементного отношения 0,5 и более).[20]

ru.m.bywiki.com

Гидратация цемента | Справочник

При затворении портландцемента водой происходят реакции, обусловливающие твердение цементного теста. В присутствии воды силикаты и алюминаты образуют продукты гидратации, которые постепенно затвердевают и превращаются в цементный камень.

При взаимодействии составляющих цемента с водой идут два процесса. Прежде всего происходит непосредственное присоединение молекул воды, или истинная гидратация. Второй процесс характерен взаимодействием минералов цемента с водой с их разложением — гидролиз. Обычно применяют термин «гидратация» ко всем типам реакций цемента с водой, т. е. как к истинной гидратации, так и к гидролизу.

Ле Шателье около 80 лет назад впервые установил, что при одинаковых условиях продукты гидратации цемента имеют тот же химический состав, что и продукты гидратации его отдельных составляющих. Позже это было подтверждено Стейнором, а также Боггом и Лерчем, хотя и с оговоркой, что продукты реакции могут воздействовать друг на на друга или даже взаимодействовать друг с другом в системе. Силикаты кальция — основные составляющие цемента, поэтому физические свойства цемента во время гидратации определяются поведением каждого из этих составляющих в отдельности.

Продукты гидратации цемента характеризуются низкой растворимостью в воде, о чем свидетельствует высокая водостойкость цементного камня. Гидратированные новообразования цемента прочно связываются с непрореагировавшим цементом, однако механизм этой связи пока не ясен. Возможно, что гидратные новообразования создают оболочку, которая растет изнутри под воздействием воды, проникающей через эту оболочку. Или возможно, что растворенные силикаты проникают через оболочку и осаждаются на ней в виде внешнего слоя. И третья возможность: образование и осаждение коллоидного раствора во всей массе после того, как достигнуто насыщение, дальнейшая гидратация продолжается внутри этой структуры.

Каким бы ни был способ осаждения продуктов гидратации, скорость гидратации непрерывно уменьшается, так что даже после длительного времени остается заметное количество негидратированного цемента. Так, например, через 28 суток после затворения водой зерна цемента прогидратировали только на глубину 4ц,. Пауэре подсчитал, что полная гидратация при нормальных условиях возможна только для цементных зерен размером менее 50|л, но при непрерывном размельчении цемента в воде полная гидратация была получена в течение 5 суток.

Микроскопическое исследование гидратированного цемента не подтверждает прохождения воды в глубь зерен цемента и выборочной гидратации наиболее реакционно способных составляющих (например, C3S), которые могут находиться в центре зерна. Поэтому представляется, что гидратация развивается вследствие постепенного уменьшения размеров цементных зерен. Действительно, было обнаружено, что в возрасте нескольких месяцев негидратированные зерна цемента грубого помола содержат как C3S, так и C2S и, возможно, что мелкие частицы C2S гидратируются раньше, чем завершается гидратация крупных частиц C3S.

Различные составляющие цемента обычно присутствуют во всех его зернах, и исследования показали, что оставшиеся зерна цемента после определенного периода гидратации имеют тот же относительный минералогический состав, что и целое зерно до гидратации. В течение первых 24 ч может все же происходить избирательная гидратация.

Основными гидратами являются гидросиликаты кальция и трех-кальциевый гидроалюминат. Полагают, что C4AF гидратируется с образованием трехкальциевого гидроалюмината и аморфной фазы, возможно CaO-Fe2O3-aq. Возможно также, что некоторое количество Fe2O3 присутствует в твердом растворе гидроалюмината кальция1.

Степень гидратации цемента может быть определена различными способами посредством измерения: количества Са (ОН)2 в тесте; тепловыделения при гидратации; удельного веса теста; количества химически связанной воды; количества негидратированного цемента (с помощью рентгеноструктурного анализа), а также косвенного по прочности цементного камня.

uralzsm.ru


Смотрите также