ВЛИЯНИЕ ДОЛОМИТОВОЙ МУКИ НА СВОЙСТВА РАСТВОРНОЙ СОСТАВЛЯЮЩЕЙ БЕТОНА. Мука цемент


Коровкин М.О., Шестернин А.И., Ерошкина Н.А. Влияние доломитовой муки на свойства растворной составляющей бетона

УДК 691.545

Коровкин Марк Олимпиевич1, Шестернин Александр Игоревич2, Ерошкина Надежда Александровна31ФГБОУ ВПО «Пензенский государственный университет архитектуры и строительства», к.т.н., доцент2ФГБОУ ВПО «Пензенский государственный университет архитектуры и строительства», магистрант3ФГБОУ ВПО «Пензенский государственный университет архитектуры и строительства», к.т.н., инженер-исследователь

АннотацияИсследовано влияние частичного замещения цемента отходом дробления щебня – доломитовой мукой на свойства строительного раствора. Показано, что применение тонкого наполнителя эффективно только при его совместном использовании с суперпластификатором.

Ключевые слова: доломитовая мука, отход камнедробления, суперпластификатор, тонкий наполнитель

Korovkin Mark Olimpievich2, Shesternin Alexander Igorevich3, Eroshkina Nadezda Alexandrovna31Penza State University of Architecture and Construction, Candidate of Technical Sciences, Associate Professor2Penza State University of Architecture and Construction, Master-student3Penza State University of Architecture and Construction, Candidate of Technical Sciences, Engineer-researcher

AbstractThe influence of partial cement substitution by crushed gravel waste - dolomite powder on the properties of mortar was investigated. It is shown that the use of particulate filler is only effective when it is combined with the superplasticizer.

Keywords: dolomite powder, particulate filler, superplasticizer, waste crushing

Рубрика: 05.00.00 ТЕХНИЧЕСКИЕ НАУКИ

Библиографическая ссылка на статью:Коровкин М.О., Шестернин А.И., Ерошкина Н.А. Влияние доломитовой муки на свойства растворной составляющей бетона // Современные научные исследования и инновации. 2014. № 12. Ч. 1 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2014/12/42050 (дата обращения: 11.01.2018).

Введение

Исследования различных аспектов применения дисперсных наполнителей цементов ведутся многие десятилетия. Эти материалы применялись обычно для снижения стоимости вяжущего, а также для улучшения других свойств цемента – снижения усадки, тепловыделения и т.д. В качестве дисперсных материалов могут использоваться измельченные отсевы дробления щебня [1, 2], измельченные отсевы дробления вторичного щебня [3], а также отходы рудообогащения, пыль газоочистки и другие дисперсные отходы промышленности [1]. Основным негативным фактором, сдерживающим применение инертных дисперсных наполнителей, является снижение прочности смешанного цемента при повышенных дозировках [1].

Опыт использования в производстве бетона одной из наиболее эффективных групп химических модификаторов бетона – суперпластификаторов показал, что применение этих добавок в бетонах средних и низших классов приводит к снижению расходов цемента ниже объёмов, обеспечивающих раздвижку цементным тестом зерен заполнителя. Особенно этот недостаток проявляется в случае введения суперпластификатора при его совместном помоле с цементом [4] или при введении добавки на дисперсном носителе [5]. Отмеченная особенность составов бетона с суперпластификатором позволяет эффективно использовать эту добавку только в высокопрочных или высокоподвижных бетонах. Для решения этой проблемы в бетоны вводится тонкий наполнитель, в качестве которого используют различные дисперсные минеральные добавки, что позволяет повысить удобоукладываемость бетонной смеси и долговечность бетона за счет уменьшения в нем количества макродефектов [6].

В настоящей работе исследовано влияние измельчённого отхода дробления доломитового щебня на свойства растворной составляющей бетона.

Методы и материалы

Исследования проводили на цементе ПЦ 500 Д0 производства ОАО «Мордовцемент». Из портландцемента и каменной муки – тонкодисперсного отхода дробления доломитового щебня Саткинского месторождения c удельной поверхностью 310 м2/кг готовился смешанный цемент с различной долей замещения вяжущего.

В большинстве составов бетонов низких и средних классов отношение песка к цементу (П/Ц) составляло 1,8…2,1, в связи с чем исследования доломитового наполнителя проводились на растворной составляющей бетона с отношением П/Ц = 2. Смесь готовилась на смешанном вяжущем и песке Сурского месторождения с Мк = 1,52. В эксперименте готовились растворы с различным водоцементным отношением и содержанием каменной муки в смешанном цементе с суперпластификатором в виде раствора в количестве 0,5 % и 1 %, а также составы без добавки. После формования образцы в течение 24 часов хранились в полиэтиленовых пакетах, а затем, после извлечения из форм, в воде.

В качестве водоредуцирующей добавки в экспериментах был использован суперпластификтор Sika ViscoCrete 20HE, который относится к третьему поколению высокоэффективных суперпластификаторов. Эта добавки рекомендуется для производства пластичных и самоуплотняющихся бетонных смесей с высокой ранней прочностью.

В ходе исследования определялась консистенция растворной смеси по расплыву на встряхивающем столике, прочность в различные сроки и усадка раствора после высушивания при 105 °С.

Водоредуцирующая эффективность суперпластификатора в растворах характеризовалась показателем ВР, который рассчитывался по формуле ВР = 100×(ВЦк – ВЦп)/ВЦк, где ВЦк и ВЦп – водоцементное отношение растворных смесей без добавки и с добавкой при их равной консистенции.

В связи с тем, что подбор водоцементного отношения для получения равноподвижных смесей с различным содержанием пластификатора трудоёмкая задача, а также учитывая то, что зависимость между расплывом на встряхивающем столике D и водоцементным отношением имеет линейный характер, значения ВЦк и ВЦп рассчитывались по эмпирическим зависимостям D = f(ВЦ), которые находили по экспериментальным данным.

Результаты и обсуждение результатов

Введение в цемент дисперсного наполнителя приводит к незначительным изменениям водопотребности растворной смеси. Анализ результатов в таблице показывает, что при замене 28 % цемента каменной мукой водоцементное отношение в пластичных смесях можно снизить всего на 7 %. В остальных составах изменений водопотребности не отмечено.

Замена части цемента доломитовой мукой приводит к значительным изменениям свойств раствора. При замене 50 % цемента дисперсным наполнителем происходит снижение прочности в возрасте 3 суток в 2-6 раза, а в возрасте 28 суток – в 2-4 раза. При снижении В/Ц отношения негативное влияние каменной муки на прочность почти линейно уменьшается. В вязи с этим оправдано применение водоредуцирующей добавки. Эффективность исследованного суперпластификатора, как видно из графиков (рис. 1), построенных для смесей с расплывами на встряхивающем столике 270-280 мм, также зависит от содержания в цементе доломитовой муки.

Снижение прочности смешанного цемента может быть скомпенсировано за счёт применения водоредуцирующей добавки. Как видно из графиков, построенных для растворов с равной консистенцией (рис. 2), прочность бездобавочного состава – 30 МПа может быть достигнута при введении 0,5 % суперпластификатора при замещении 24 % цемента, а при дозировке добавки 1 % степень замещения может быть повышена до 33 %.

Введение дисперсного наполнителя в смешанный цемент значительно снижает усадочные деформации. При замене 50 % цемента значения усадки снижаются на 35-55 %, причём эффективность снижения этой характеристики за счёт введения наполнителя при повышении В/Ц линейно возрастает.

Таблица 1. Зависимость свойств растворов на смешанных цементах от их состава

В/Т Доля замещения цемента, % Состав смешанного цемента СП,

%

Диаметр

расплыва, мм

Прочность,

МПа, через

Усадка

мм/м

Цемент,

г

Наполнитель, г 3

суток

28

суток

0,5 0 150 0 0,5 286 20,8 40,3 0,7
28 108 42 273 10,5 28 0,61
40 90 60 276 7,3 20,3 0,49
52 72 72 295 3,8 10 0,45
0,5 0 150 0 - 140 19,9 35,7 0,8
28 108 42 115 11,4 19,7 0,75
40 90 60 162 9,5 23,7 0,61
52 72 72 163 3,9 14,3 0,49
0,36 0 150 0 0,5 105 12,3 21,5 0,88
28 108 42 104 12,1 18,7 0,75
40 90 60 111 12,3 20,3 0,53
52 72 72 107 5,8 10,8 0,4
0,6 0 150 0 - 231 14,1 34,2 0,7
28 108 42 266 12,8 26,0 0,98
40 90 60 239 8,0 18,0 0,13
52 72 72 238 1,6 8,3 0,55
0,43 0 150 0 1 243 33,0 62,0 0,88
28 108 42 265 20,4 49,5 0,75
40 90 60 245 16,0 38,5 0,68
52 72 72 257 8,8 20,8 0,48
0,35 0 150 0 1 117 32,1 49,5 0,89
28 108 42 148 22,1 42,8 0,66
40 90 60 151 21,4 33,8 0,62
52 72 72 131 12,6 22,2 0,40

Рисунок 1. Влияние степени наполнения цемента каменной мукой на водоредуцирующий эффект суперпластификатора при различной дозировке добавки

Рисунок 2. Влияние степени наполнения цемента каменной мукой на прочность при различной дозировке суперпластификатора

Заключение

Несмотря на положительное влияние доломитовой муки на усадочные деформации и очевидное снижение стоимости смешанного цемента, применение этого материала в составе цемента без водоредуцирующей добавки не целесообразно из-за негативного влияния наполнителя на прочность, которая может снизиться в несколько раз. Совместное применение доломитовой муки и суперпластификатора позволяет заменить в составе бетона или строительного раствора цемент без снижения прочности материала.

Библиографический список
  1. Баженов Ю.М., Демьянова В.С., Калашников В.И. Модифицированные высококачественные бетоны. М.: Издательство АСВ, 2006. 368 с.
  2. Калашников, В. И. Через рациональную реологию – в будущее бетонов / В. И. Калашников // Технологии бетонов. -2007. -№ 5. -С. 8-10; 2007. -№ 6. -С. 8-11; 2008. -№ 1. -С. 22-26.
  3. Коровкин М.О., Шестернин А.И. Применение бетонного лома в производстве заполнителя для самоуплотняющегося бетона // Бетон и железобетон – взгляд в будущее: Научные труды III Всероссийской (II Международной) конференции по бетону и железобетону. Т6. Москва: МГСУ, 2014. С. 295-313.
  4. Коровкин, М.О. Исследование эффективности суперпластификатора С-3 в вяжущем низкой водопотребности / Коровкин М.О. // Строительство и реконструкция. 2011. № 2. С. 84-88.
  5. Коровкин М.О., Ерошкина Н.А., Саденко Д.С. Влияние способа введения суперпластификатора на его водоредуцирующий эффект // Региональная архитектура и строительство. 2013. № 2. С. 66-70.
  6. Коровкин М.О., Калашников В.И. Ресурсосберегающая эффективность суперпластификатора в бетоне // Региональная архитектура и строительство. 2011. № 2. С. 59-61.
Количество просмотров публикации: Please wait

Все статьи автора «Коровкин Марк Олимпиевич»

web.snauka.ru

ВЛИЯНИЕ КАМЕННОЙ МУКИ НА ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ БЕТОНОВ

Бетоном называют искусственный материал, который получается в результате склеивания (скрепления) естественных каменных материалов - песка и гравия или щебня - в монолитный прочный камень. Различаются бетоны по вяжущему веществу, с помощью которого скрепляются зерна естественных каменных материалов. Наибольшее распространение имеет цементный бетон, который изобрели в середине 19 века. С тех пор его состав существенно не изменился: цемент, песок, щебень и вода с добавлением суперпластификаторов-разжижителей. Однако в мировом научном сообществе наиболее актуальной темой уже давно является применение и совершенствование бетонов нового поколения – High Performance Concrete (HPC) – высокофункциональных бетонов. Они состоят из 7 и более оптимально подобранных компонентов и по своим свойствам значительно превосходят традиционные.

Характерной чертой современных бетонов является наличие в их составе значительного количества реологической матрицы, которая состоит из цемента, каменной муки, тонкого песка и воды с суперпластификатором (СП) или гиперпластификатором (ГП), в которой размещаются крупный песок-заполнитель и щебень. Для того чтобы обеспечить высокой подвижностью такие бетонные смеси требуется достаточно большое количество реологической матрицы. В них крупный и мелкий заполнитель как бы «плывет», не встречая препятствий и сопротивления, тогда как в бетонах старого поколения при недостатке матрицы частички заполнителя мешают друг другу и для укладки такого бетона приходится применять виброуплотнение или добавлять воду, увеличивая тем самым пористость и снижая прочность [2].

Для увеличения объема реологической матрицы требуется увеличить долю тонкодисперсных компонентов, таких как цемент или каменная мука. Повышение доли цемента будет не рациональным, так как будет приводить его перерасходу и увеличению стоимости бетона, а также к увеличению усадки. Таким образом, целесообразнее вводить каменную муку в оптимальном соотношении с цементом.

Одной из самых распространенных в российской практике производства High Performance Concrete каменной муки является пылевидный кварц, т.е. молотый до высокой удельной поверхности 250-500 м2/кг кварцевый песок. Его достоинствами является высокая реологическая активность, а при использовании его в бетонах наблюдается повышение плотности и снижение пористости. Используя данную тонкодисперсную добавку при оптимально подобранном соотношении, прочность бетонов может достигать 150 МПа и более.

Имея такие технологические достоинства, у микрокварца есть и существенный недостаток – это повышенная себестоимость получения, которая связана с промывкой песка от глинистых частиц и последующей сушкой и помолом в мельницах, что требует значительных энергозатрат. В связи с этим пылевидный кварц теряет часть своих преимуществ и является мало востребованным в России. В связи с этим поиск горной породы для замены пылевидного кварца является достаточно актуальным.

Выбирая ту или иную каменную породу, важным условием является совместимость цементов с химическими и минеральными добавками. Помимо этого они должны отвечать следующим требованиям:

1) достаточная плотность (чтобы предотвратить движение воды и растворенного гиперпластификатора в поры частиц). По водопоглощению породы, которые пригодны для использования в тонкомолотом виде в качестве дисперсных наполнителей, можно классифицировать на 3 категории: I категория – водопоглощение не более 2% – является наиболее пригодным для получения бетонов всех марок до М1200; II категория – водопоглощение от 2 до 4% – может быть использован для получения бетонов марок до М1000; III категория – водопоглощение от 4 до 6% – может быть использован для бетонов марок до М800.

2) высокая дисперсность и должны быть измельчены до микромасштабного уровня от 0 до 120 мкм для образования текучей дисперсной системы, т.е. иметь удельную поверхность в пределах 300-500 м2/кг. Породы вулканического происхождения в своем большинстве являются плотными (литой или кристаллической структуры). Пористые вулканические породы (пеплы, туфы, пемзы) имеют замкнутую пористость с алюмосиликатными перегородками пор и при измельчении тонкие частицы не поглощают воду.

3) должны обладать реологической активностью, которая сопоставима с активностью цемента или близка к ней. Увеличение водопотребности смеси цемента с тонкодисперсным наполнителем по сравнению с чистым цементом допускается до 10-15%. Наполнитель является непригодным в том случае, если водопотребление будет увеличиваться по сравнению с цементом до 25-28% и более.

4) наличие положительного заряда частиц тонкодисперсного наполнителя, потому что все СП и ГП являются анионактивными и отрицательно заряженными функциональными группами, что способствует адсорбции полиионов гиперпластификатора на поверхности частиц, тем самым увеличивая подвижность смеси. На отрицательно заряженных частицах ионы ГП не осаждаются и их реологическое действие незначительно (кварцевый песок, диатомит, опока). Несомненно их поверхность можно перезарядить, вследствие чего можно заметить сравнительную растекаемость минеральной и цементно-минеральной суспензий.

Для того чтобы определить физико-технические характеристики сырьевых материалов используется методика оценки с целью их пригодности в качестве реологически-активной добавки для производства порошково-активированных бетонов нового поколения марок М250-М1200 со снижением расхода цемента в 1,5-2,0 раза [4-6].

В соответствии с данной методикой в первом тесте определяется водопоглощение по массе зерен щебня фракции 15-20 мм до постоянной массы в течение не менее 48 часов. Результаты исследования различных по происхождению горных пород приведены в таблице 1. По результатам теста видно, что наименьшим водопоглощением обладают породы магматического происхождения, такие как базальт, гранит, диабаз. Также в качестве каменной муки можно использовать такие карбонатные породы как доломит, Воронежская область и известняк Медвежья Гора, г. Тольятти.

Таблица 1.

Водопоглощение горных пород.

Порода

Водопоглощение, %

Порода

Водопоглощение, %

Диатомит природный Пензенская обл.

120

Опока, Пензенская обл.

60-80

Базальт Кемеровский

0,11

Песчаник Саловский

1,4

Известняк г. Исса, Пензенская обл.

7-16

Известняк Медвежья Гора, г. Тольятти

0,7-0,8

Гранит

0,09-0,15

Доломит г. Воронеж

0,5-1

Диабаз Кемеровский

0,1

Песчаник Никольский

5-12

 

 

Наиболее подходящим для использования в производстве бетонов из пород Пензенской области является песчаник Саловского месторождения с водопоглощением 1,4%. Однако, данное месторождение не разрабатывается. Известняк Иссинского и песчаник Никольского месторождений оказались неоднородны по пористости в различных кусках. Открытая пористость колебалась в пределах 5-16%. Как видно по минимальному пределу песчаник и известняк удовлетворяют требованиям по пористости. Наибольшим водопоглощением обладают горные породы осадочного происхождения – опока и диатомит – 60-80% и 120% соответственно.

Анализируя породы, которые распространены в Пензенской области, делается заключение о том, что наиболее подходящими для НРС-бетонов в качестве тонкодисперсной каменной муки являются осадочные породы: песчаник и известняк. Обе эти породы в настоящее время активно разрабатываются промышленным способом. Однако требуется проведение дополнительных исследований для подтверждения реологической активности.

Во втором тесте оценивают качество каменной муки посредством определения расплыва её индивидуальной водной суспензии, а также в смеси с цементом и суперпластификатором и определение водоредуцирующего (водопонижающего) эффекта.

Результаты эксперимента по тестированию суспензии Красноярского цемента и суспензии цемента с каменной мукой из известняка (Sуд=320 м2/кг) и песчаника (Sуд=380 м2/кг) приведены в таблице 2. В качестве гиперпластификатора использовался Melflux 5581F (1% от массы цемента). Видно, что суспензия из двух порошков – цемента и известняковой муки в соотношении 1:1 с ГП требует меньшего количества воды для получения одинакового расплыва. Водоредуцирующий (водопонижающий) эффект гиперпластификатора в этой суспензии на 13% выше при соотношении, чем на цементной суспензии.

Таблица 2.

Результаты тестирования суспензии Красноярского цемента и суспензии цемента с каменной мукой из известняка и песчаника.

Цемент/

Каменная мука

В/Ц, В/Т

Расплыв, мм

Вэф

В/Ц, В/Т

Расплыв, мм

Вэф

без ГП

с ГП

без ГП

с ГП

Известняк

Песчаник

1/0

(В/Ц)н=0,45

(В/Ц)п=0,215

285

300

2,1

(В/Ц)н=0,45

(В/Ц)п=0,215

300

285

2,09

1/0,5

(В/Ц)н=0,45

(В/Ц)п=0,2

285

310

2,25

(В/Ц)н=0,45

(В/Ц)п=0,215

310

285

2,09

1/1

(В/Ц)н=0,45

(В/Ц)п=0,19

290

310

2,37

(В/Ц)н=0,45

(В/Ц)п=0,22

305

285

2,05

 

Для изготовления бетонов марки не выше М300 может использоваться соотношение «цемент: каменная мука» равное 1:1. Более рациональным соотношением материалов в бетонах будет 1:0,5. На основании проведенного исследования пород можно сделать вывод, что в Пензенской области имеются каменные породы, которые могут быть использованы в качестве реологически-активной тонкодисперсной минеральной добавкой для производства современных бетонов повышенной эффективности. Такими породами являются известняк Иссинского и песчаники Никольского и Саловского месторождений.

Таким образом, используя каменную муку из пород, которые отобрали в результате тестирования, были изготовлены порошково-активированные песчаные и щебеночные бетоны [1, 3]. Главным требованием было то, что все они были изготовлены без использования реакционно-активной пуццоланической добавки – микрокремнезема, что в свою очередь, существенно снижает стоимость бетонов и расширяет географические горизонты использования БНП за счет введения в бетонное производство местных материалов.

Водопоглощение изготовленных бетонов через трое суток насыщения находится в пределах 2-3% и не превышает значений водопоглощения традиционных тяжелых щебеночных бетонов старого поколения с высоким расходом плотного щебня и количеством цемента 300-400 кг/м3. Усадочные деформации находятся в диапазоне 0,3-0,4 мм/м, т.е. также не превышают допустимых значений для тяжелого бетона.

Удельный расход цемента на единицу прочности порошково-активированных песчаных бетонах в среднем составляет от 5,96 кг/МПа. Более низкие удельные показатели расхода цемента получены у малоцементных порошково-активированных щебеночных бетонов, где минимальное значение . Необходимо отметить, что для песчаных бетонов старого поколения , а для бетонов переходного поколения с СП удельный расход обычно составляет от 9 до 12 кг/МПа и более. Самые лучшие бетоны переходного поколения с микрокремнеземом имеют удельный расход цемента 6-8 кг/МПа.

В результате проведенных исследований и экспериментов установлено, что удельный расход цемента на единицу прочности при сжатии, является всеобъемлющим оценочным критерием всех бетонов и значительно ниже, чем в бетонах старого и переходного поколений с СП, а водопоглощение этих бетонов находится в пределах от 1,7 до 3,0%, что гарантирует высокую водостойкость, низкую водопроницаемость и морозостойкость, и определяет их долговечность.

 

Список литературы:

1. Ананьев С.В. Состав, топологическая структура и реотехнологические свойства реологических матриц для производства бетонов нового поколения: дис. канд. техн. наук. Пенза, 2011. 148 с.

2. Белякова Е.А. Порошковые и порошково-активированные бетоны с использованием горных пород и зол ТЭЦ: дис. канд. техн. наук. Пенза, 2013. 190 с.

3. Валиев Д.М. Пропариваемые песчаные бетоны нового поколения на реакционно-порошковой связке: дис.  канд. техн. наук. Пенза, 2013. 167 с.

4. Калашников В.И. Через рациональную реологию – в будущее бетонов // Технологии бетонов. 2007. № 5. С. 8-10; 2007. № 6. С. 8-11; 2008. № 1. С. 22-26.

5. Калашников В.И. Терминология науки о бетоне нового поколения // Строительные материалы. 2011. № 3. С. 103-106.

6. Калашников С.В. Тонкозернистые реакционно-порошковые дисперсно-армированные бетоны с использованием горных пород: дис. канд. техн. наук. Пенза, 2006. 163 с.

sibac.info

Белякова Е.А., Москвин Р.Н., Мороз М.Н., Белякова В.С. Возможность использования известняковой муки для изготовления высокопрочных бетонов

Белякова Елена Аксандровна1, Москвин Роман Николаевич2, Мороз Марина Николаевна3, Белякова Варвара Сергеевна41ФГБОУ ВПО "Пензенский государственный университет архитектуры и строительства", кандидат технических наук,2ФГБОУ ВПО "Пензенский государственный университет архитектуры и строительства", кандидат технических наук,3ФГБОУ ВПО "Пензенский государственный университет архитектуры и строительства", кандидат технических наук,4ФГБОУ ВПО "Пензенский государственный университет архитектуры и строительства", студент

Belyakovа Elena Aleksandrovna1, Moskvin Roman Nikolaevich3, Moroz Marina Nikolaevna3, Belyakovа Varvara Sergeevna41Penza State University of architecture and construction, candidate of technical sciences,2Penza State University of architecture and construction, candidate of technical sciences,3Penza State University of architecture and construction, candidate of technical sciences,4Penza State University of architecture and construction, student

Библиографическая ссылка на статью:Белякова Е.А., Москвин Р.Н., Мороз М.Н., Белякова В.С. Возможность использования известняковой муки для изготовления высокопрочных бетонов // Современные научные исследования и инновации. 2014. № 12. Ч. 1 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2014/12/42298 (дата обращения: 11.01.2018).

Разработки профессора В.И. Калашникова и его научной школы посвящены созданию порошково-активированных высокопрочных и сверхвысокопрочных бетонов с классами по прочности на сжатие В80-В140 и бетонов общестроительного назначения классов В15-В60.[1-4].

Порошково-активированные бетоны нового поколения кардинально отличаются от четырехкомпонентных бетонов старого поколения, включающих цемент, песок, щебень и воду и от бетонов переходного поколения, которые состоят из пяти компонентов с дополнительно введенным суперпластификатором.

В высотном строительстве г. Москвы используются шестикомпонентные бетоны «цемент+ песок + щебень + вода + микрокремнезем + суперпластификатор». Прочность таких бетонов достигает 90-100 МПа (класс прочности В70-В80). Эти бетоны имеют более низкую прочность, чем разработанные в ФГБОУ ВПО Пензенском государственном университете архитектуры и строительства.

Особенностью семи-восьмикомпонентнных порошково-активированных бетонов нового поколения является наличие в их составе значительного количества каменной муки с дисперсностью равной или большей чем дисперсность цемента. Обычно удельная поверхность составляет 3000-5000 см2/г. Кроме того в состав бетона добавляется тонкий кварцевый песок фракции 0,1-0,5 мм. Это позволяет получить не только порошково-активированные бетоны общестроительного назначения классов В15-В50 со снижением расхода цемента в 1,5-2,0 раза, но и получать при малых расходах цемента (150-200 кг/м3) самоуплотняющиеся и самоуплотняющиеся бетонные смеси, что невозможно получить в бетонах старого и переходного поколения.

Кроме того становится возможным получение высокопрочных самоуплотняющихся бетонов и фибробетонов классов В100-В140 при расходах цемента 300-400 кг/м3 с удельным расходом цемента на единицу прочности 2,5-4,0 кг/МПа.

Многообразие горных пород различного происхождения, вызывает научный интерес на возможность использования их в качестве тонкомолотой каменной муки для изготовления реакционно-порошковых бетонов.

В данной статье приведены исследования основных реологических и физико-технических характеристик Салаватской известняковой муки – как реологически-активной добавки, полученную помолом известняка, в смеси с цементом и изучена возможность использования известняковой муки для изготовления реакционно-порошковых бетонов нового поколения.

Известно, что в зависимости от величины водопоглощения по массе через 48 часов известняк подразделяется на следующие категории:

I категория – водопоглощение не более 2 %

II категория – водопоглощение от 2 до 4%

III категория – водопоглощение от 4 до 6%

Известняк I категории является наиболее пригодным для получения бетонов всех марок -  от М200 до М1200. Известняк II категории может быть использован для получения бетонов марок от М200 до М1000. Известняк III категории может быть использован для бетонов марок от М200 до М800.

Проведение исследований начинали с приготовления сырьевых материалов: навеска щебня высушивалась до постоянного веса при температуре 105-110°С. 100 г. абсолютно сухого щебня погружала в воду. Водопоглощение зависит от вида пористости материала и непосредственно связано с капиллярно-пористой структурой его. Замкнутые, сферические поры не заполняются водой при обычных испытаниях на водопоглощение. Например, ячеисто-пористые ноздреватые базальты со средней плотностью в куске, равной 2000-2500 кг/м3 не насыщаются водой, хотя имеют пористость 15-35%. Щебень из них имеет малую дробимость по сравнению с плотными базальтами и при пористости 30-35% позволяют получать облегченные бетоны. Для таких базальтов их высокая пористость не является препятствием для использования их в виде каменной муки в качестве дисперсного наполнителя.

Известняк имеет невысокую дробимость. Был осуществлен визуальный и микроскопический просмотр зерен щебня. Визуальный осмотр показал, что зерна имеют различную структуру. Большая часть зерен щебня имеет плотную структуру без видимых округлых пор и геометрически неправильных пустот (каверн). Количество плотной составляющей в щебне доходит до 65-67%.

Меньшая часть зерен известняка (33-35%) имеет округлые поры и каверны. Это слабые зерна (по прочности). Наличие слабых зерен понижает дробимость общей фракции.

При исследовании водопоглощения известнякового щебня он через 3 часа после водонасыщения вынимался из емкости с водой и укладывался на сухую материю. Каждое зерно отдельно протиралось куском материи и навеска взвешивалась на точных электронных весах с точностью до 0,1 г. После взвешивания зерна снова погружались в воду. Через 3 часа водопоглощение составляло 1,83%; через 2 суток 1,92%, через 7 суток 2,3%. Эти результаты свидетельствуют о том, что Салаватский известняк по показателям водопоглощения через 48 часов относится к I категории для изготовления каменной муки.

Для оценки возможности использования каменной муки из отсева камнедробления известняка с фракцией 0-5 мм, полученного дроблением щебня в конусной дробилке, был осуществлено просеивание этой фракции 0-5 мм на сите 008(80 мкм). Проход через сито 008 был проанализирован на приборе ПСХ-2 для определения удельной поверхности. В результате анализа было установлено, что дисперсность муки была очень низкой и составляла 1020 см2/г, что в 3 раза меньше, чем дисперсность товарных цементов. При этом содержание тонкой фракции, прошедшей через сито с размером ячейки 80 мкм, составляло 22% от общей навески.

В соответствии с нашими требованиями к каменной муке, используемой в качестве реологически-активного компонента, ее удельная поверхность должна быть в пределах 3000-4000 см2/г. Эти регламентные требования были нами установлены на основании работы с каменной мукой в течении 10 лет при изготовлении эффективных бетонов.

Для получения каменной муки с необходимой дисперсностью был осуществлен помол известняка в лабораторной шаровой мельнице до удельной поверхности Sуд=3200 см2/г. Окончательной оценкой качества каменной муки является необходимый расплыв водной суспензии ее в смеси с цементом и с суперпластификатором, а также определение водоредуцирующего эффекта. Для этого, в начале определяется расплыв суспензии цемента с водой. Затем определяется количество воды от массы цемента для получения расплыва суспензии из конуса Хегерманна (конус от встряхивающего столика по ГОСТ 310.4-81*), равного 280-320 мм. Второй эксперимент проводится на пластифицированной суспензии. В качестве суперпластификаторов использовали Melflux 5581. Использование высокоэффективных суперпластификаторов – основа получения бетонов нового поколения.

Таким образом, в воду затворения с суперпластификатором при перемешивании постепенно высыпается портландцемент и по истечении 5 минут смешивания суспензия выливается в конус.

После определения расплыва, который, в отличие от суспензии без СП, продолжается не менее 30 сек, необходимо определять водоредуцирующий (водопонижающий) эффект.

Поликарбоксилатные гиперпластификаторы обеспечивают при В/Ц = =0,18-0,2 расплывы суспензий диаметром 280-230 мм на цементах различных производителей и водоредуцирующий эффект от 2 до 2,8, т.е. снижают расход воды в 2-2,5 раза.

После тестирования растекаемости цемента вторым этапом является оценка растекаемости суспензии из композиции двух порошков – цемента и каменной муки. Соотношение «цемент: каменная мука» по массе должно быть 1:0,5 и 1:1. Если при этом расплывы такой суспензии и цементной суспензии с каменной мукой будут одинаковы при равном количестве воды, то мука не ухудшает способности цемента разжижаться под действием суперпластификатора. Если же при одинаковых расплывах цементно-минеральная суспензия потребует меньше количество воды, то мука усиливает действие суперпластификатора и является наиболее приемлемой в качестве реалогически-активной добавки.

Если цементно-минеральная суспензия потребует большое количество воды для одинакового расплыва с цементной, то использование такой муки становится возможным лишь в том случае, если возрастание расхода воды не превышает 10-15% по сравнению с цементной.

В качестве примера, поясняющего методику оценки каменной муки, приведены результаты эксперимента с тестированием суспензии цемента и суспензии цемента с Салаватской известняковой мукой с Sуд=3200 см2/г. Результаты представлены в таблице.

Таблица

Составсуспензии, г

Расходкомпонентов, г

В/Ц

В/Т

Расплыв с ГП,мм

Расплыв безГП, мм

Вэф

1.Цемент

2.Вода

600

270

(В/Ц)н=0,45

-

285

1.Цемент

2.Вода

3.Melflux 5581

(1% от Ц.)

1000

215

10

(В/Ц)=0,215

300

-

2,15

1.Цемент

2.Известняковая мука с Sуд=3200см2/г

3.Вода

300

300

270

(В/Т)н=0,45

-

285

1.Цемент

2.Известняковаямука с Sуд=3200 см2/г

3. Melflux 5581 (1,0% от цемента)

4.Вода

500

500

5

 190

(В/Т)n=0,19

310

-

2,33

Как следует из таблицы суспензия из двух порошков цемента и известняковой муки с гиперпластификатором Melflux 5581 требует меньшее количество воды для получения одинакового расплыва. Водоредуцирующий (водопонижающий) эффект  гиперпластификатора на этой суспензии на 11% выше, чем на цементной суспензии. Таким образом, известняк для изготовления известняковой муки относится к I категории. С использованием этой каменной муки можно будет изготавливать не только малопластичные и жесткие бетонные смеси, но и самоуплотняющиеся и саморастекающиеся.

Соотношение цемент: известняковая мука равное 1:1 будет использоваться для изготовления бетонов, не превышающих марку М300. Чаще всего, наиболее употребительными в бетонах будут соотношения 1:0,75 или 1:0,5. При таких соотношениях реотехнологический показатель расплыва суспензий, практически не меняется.

При изготовлении реакционно-порошкового бетона с использованием известняковой каменной муки с соотношением «цемент:каменная мука» – «1:0,5» (состав РПБИЦБ-2) результаты показали, что полученный бетон имеет прочность на осевое сжатие через 1 сутки н.у.т. – 67 МПа, через  28 суток – 130 МПа, прочность при изгибе через 1 сутки н.у.т. составила 9,8 МПа, через 28 суток – 14,5 МПа. Расплыв смеси на конусе Хагерманна 30 см.

Как видно из полученных данных, известняковую каменную муку можно использовать в качестве тонкомолотого наполнителя для получения самоуплотняющихся и саморастекающихся бетонных смесей и высокопрочных бетонов.

Библиографический список
  1. Основы пластифицирования минеральных дисперсных систем для производства строительных материалов. Калашников В.И. автореферат диссертации на соискание ученой степени доктора технических наук / Воронеж, 1996.
  2. Калашников В.И., Борисов А.А., Поляков Л.Г., Крапчин В.Ю., Горбунова В.С. Современные представления об использовании тонкомолотых цементов и ВНВ в бетонах. Строительные материалы. 2000. №7. С.12-13.
  3. Калашников В.И., Валиев Д.М., Гуляева Е.В., Володин В.М. Высокопрочные порошково-активированные пропариваемые песчаные бетоны нового поколения. Известия высших учебных заведений. Строительство. 2011. №5. С. 14-19.
  4. Демьянова В.С., Калашников В.И., Борисов А.А. Об использовании дисперсных наполнителей в цементных системах. Жилищное строительство. 1999. №1. С.17.
Количество просмотров публикации: Please wait

Все статьи автора «Мороз Марина Николаевна»

web.snauka.ru

цементная мука - это... Что такое цементная мука?

 цементная мука adj

road.wrk. Zementmehl

Универсальный русско-немецкий словарь. Академик.ру. 2011.

  • цементная мельница
  • цементная мука крупного помола

Смотреть что такое "цементная мука" в других словарях:

  • Европа — (Europe) Европа – это плотнонаселенная высокоурбанизированная часть света названная в честь мифологической богини, образующая вместе с Азией континент Евразия и имеющая площадь около 10,5 миллионов км² (примерно 2 % от общей площади Земли) и …   Энциклопедия инвестора

  • ИЗВЕСТКОВЫЕ УДОБРЕНИЯ — содержат в качестве осн. компонента известь. Применяются для устранения избыточной кислотности (известкования) почв, гл. обр. нечерноземных дерново подзолистых, серых лесных, а также торфяных. Известкование основано на замене в т. наз. почвенном… …   Химическая энциклопедия

  • Перу. Экономико-географический очерк — Порт Кальяо. Перу. Экономико географический очерк Общая характеристика экономики. П.  аграрно промышленная страна. Большое значение имеют горнодобывающая промышленность, цветная металлургия, рыболовство и рыбообработка. Среди развитых… …   Энциклопедический справочник «Латинская Америка»

  • Известковые удобрения —         различные известковые материалы, используемые в сельском хозяйстве для известкования почвы (См. Известкование почв). Устраняют вредную для с. х. растений Кислотность почвы и обогащают её кальцием. И. у. в сельском хозяйстве применяют с… …   Большая советская энциклопедия

  • Исландия (государство) — Исландия, (Ísland), Республика Исландия (Lyðveidið Ísland). I. Общие сведения И. ‒ государство, расположенное на одноимённом острове в северной части Атлантического океана. На С. омывается Гренландским морем, на В. ‒ Норвежским морем, на… …   Большая советская энциклопедия

  • Исландия — I Исландия         остров в Атлантическом океане; см. Исландия (государство). II Исландия (Ísland)         Республика Исландия (Lyðveidið Ísland).          I. Общие сведения          И. государство, расположенное на одноимённом острове в северной …   Большая советская энциклопедия

  • Натуральные краски — Натуральные краски. Натуральные краски (не путать с красками на натуральной основе и экологически чистыми красками) – краски, полностью изготовленные из безвредных природных составляющих (полный состав указан на упаковке). Они не наносят вред… …   Википедия

  • ПЫЛЬ — ПЫЛЬ. Пыль атмосферная. П. измельченное состояние какого нибудь твердого вещества в виде частиц, не связанных или весьма слабо связанных друг с другом механически. Эти частицы б. или м. легко поднимаются в воздух, способны висеть в нем или… …   Большая медицинская энциклопедия

  • БРАЗИЛИЯ — (Федеративная Республика Бразилия), крупнейшее государство в Южной Америке, омывается Атлантическим океаном. Площадь 8512 тыс. км2. Население 151,4 млн. человек, свыше 95% бразильцы. Официальный язык португальский. Свыше 80% верующих католики.… …   Современная энциклопедия

  • ОМАН — cултанат Оман (cултанат Уман), государство на востоке Аравийского п ова. 212,4 тыс. км&sup2 (границы на западе проходят по пустыням и четко не обозначены). население 1,7 млн. человек (1993), в основном оманцы (арабы Омана). Городское население… …   Большой Энциклопедический словарь

  • Цемент — I Цемент (нем. Zement, от лат. caementum щебень, битый камень)         собирательное название искусственных неорганических порошкообразных вяжущих материалов (См. Вяжущие материалы), преимущественно гидравлических, обладающих способностью при… …   Большая советская энциклопедия

universal_ru_de.academic.ru


Смотрите также