/ ХТС / Технология вяжущих / цемент. Температура цемента при отгрузке


Температура бетонной смеси — Технология товарного бетона

Температура бетонной смеси – один из важных технологических показателей качества бетонной смеси. Наибольшее внимание температуре бетонной смеси необходимо уделять в холодное время года при пониженных положительных и отрицательных температурах воздуха, а также в теплое время года при повышенных положительных температурах.

В холодное время года при изготовлении бетонной смеси температура исходных компонентов и готовой бетонной смеси должна обеспечить качественное перемешивание. Необходимо учесть потерю температуры смеси при последующей транспортировке и формовании. Температура смеси после формовки должна быть такой, чтобы в условиях применяющегося режима твердения обеспечить прогрев бетона.

В теплое время года при повышенных положительных температурах необходимо не допустить быстрой потери подвижности бетонной смеси из-за перегрева.

Обратимся к нормативной документации.

В ГОСТ 7473-2010 «Смеси бетонные технические условия» не указан рекомендуемый диапазон температур бетонной смеси при производстве. Температура бетонной смеси должна соответствовать значению, указанному в договоре на поставку (п. 5.1.8). Допустимое отклонение температуры бетонной смеси не должно превышать 3 °C (п.5.1.7). Более ранний вариант этого документа, ГОСТ 7473-85 (отменен) по приложению 4 (справочному) устанавливает продолжительность транспортирования бетонной смеси при температуре воздуха 20-30 °С, причем температура бетонной смеси принимается 18-20 °С. Эти же температуры принимаются и по редакции ГОСТ 7473-94 (приложение Е – рекомендуемое). В последней редакции ГОСТ 7473 этих данных не приводит. Очевидно, что температура бетонной смеси 18-20 °С принимается за базовую в теплое время года.

СН 386-74 «Типовые нормы расхода цемента для бетонов сборных бетонных и железобетонных изделий массового производства» (отменен) в п.2.13: «подвижность и жесткость бетонной смеси определяются по ГОСТ 10182-62 не позднее 30 мин с момента ее приготовления при температуре смеси в пределах 10-30 °C». При этом ГОСТ 10181-2014 «Смеси бетонные. Методы испытаний» не устанавливает температуру бетонной смеси при испытаниях, единственно уточняя в п.3.6 «Температура бетонной смеси от момента отбора пробы до момента окончания испытания не должна изменяться более чем на 5 °C». Считается, что нормальные температурные условия твердения бетона от +15 до +25 °С (по п.2.14 СН 386-74). Отсюда и температура бетонной смеси после укладки должна быть близка к этим значениям.

По п.2.18 СНиП 5.01.23-83 «Типовые нормы расхода цемента при приготовлении бетонов сборных и монолитных бетонных и железобетонных изделий и конструкций» (отменен) температура бетонной смеси влияет на расход цемента. Нормальной считается температура до 25 °С, при более высоких температурах для расхода цемента вводится повышающий коэффициент: от 26 до 29 °С – 1,03; 30 и более – 1,06. Эти коэффициенты применяются и согласно п. 5.18 действующего СНиП 82-02-95 «Федеральные (типовые) элементные нормы расхода цемента при изготовлении бетонных и железобетонных изделий и конструкций».

Температура бетонной смеси устанавливается нормативными документами:

  1. В холодное время года

По п.3.4.3 ГОСТ 26633-2012 — не менее 5 °C в момент поставки. В редакции ГОСТ 26633-2015 (вступает в силу с 01.09.16 г.) этого требования уже нет.

В СНиП I-В.3-62 «Бетоны на неорганических вяжущих и заполнителях» (отменен) указано: «Минимальная температура затворенных водой товарных бетонных смесей на месте выгрузки должна быть не ниже 5 °С». В заменяющих указанный СНиП документах подобного требования нет, по всей видимости, оно перенесено в п.5.11.16 СП 70.13330.2012 «Несущие и ограждающие конструкции. Актуализированная редакция СНиП 3.03.01-87»: «Температура бетонной смеси, уложенной в опалубку, к началу выдерживания или термообработки: при методе термоса — не менее 5 °C, с противоморозными добавками – не менее чем на 5 °C выше температуры замерзания раствора затворения; при тепловой обработке – не ниже 0 °C». Указанный раздел СП входит в «Перечень национальных стандартов  и сводов правил (частей таких стандартов и сводов правил), в результате применения которых на обязательной основе обеспечивается соблюдение требований Федерального закона «Технический регламент о безопасности зданий и сооружений»(утв. постановлением Правительства РФ от 26 декабря 2014 г. N 1521) и является обязательным к применению.

Температура бетонной смеси не менее 5 °С должна быть обеспечена уже после укладки, поэтому при отгрузке на бетонном заводе необходимо учесть длительность транспортировки, выгрузки и укладки бетонной смеси. Определения термина «раствор затворения» в нормативной документации нет. По всей видимости, под ним понимается смесь воды затворения и вводимых химических добавок. Методика определения температуры замерзания раствора затворения не указана. Сама формулировка «раствор затворения» не совсем удачна, поскольку не учитывается часть воды, вводимая с заполнителями естественной влажности.

Температура бетонной смеси, доставленной на объект при температуре наружного воздуха от минус 5 °C до минус 10 °C и от минус 10 °C до минус 15 °C соответственно должна составлять не менее +10 °C и +15 °C – п.4.7.9 ТР 147-03 «Технические рекомендации по устройству дорожных конструкций из литых бетонных смесей».

Температура бетонной смеси при укладке должна быть не ниже 5 °C – по п.8.2 СП 78.13330.2012 «Автомобильные дороги. Актуализированная редакция СНиП 3.06.03-85». Указанный документ устанавливает это требование не только для зимнего времени года. Но данный пункт СП не входит в «Перечень…» и поэтому является рекомендательным.

Верхнюю границу температуры бетонной смеси устанавливает п.5.11.16 СП 70.13330.2012: «При отрицательных температурах окружающей среды на выходе из смесителя бетонная смесь на нормальнотвердеющем цементе по ГОСТ 10178 и ГОСТ 31108 – не более 35 °C; на быстротвердеющем цементе по ГОСТ 10178 и ГОСТ 31108 – не более 30 °C; на глиноземистом портландцементе – не более 25 °C».

 

  1. При производстве бетонных работ при температуре воздуха выше 25 °C

По п.5.12.2 СП 70.13330.2012 температура бетонной смеси при бетонировании конструкций с модулем поверхности более 3 не должна превышать 30 °C, а для массивных конструкций с модулем поверхности менее 3 не должна превышать 25 °C.

Не уточняется – температура ли это бетонной смеси в момент поставки или уже уложенной в опалубку.

 

  1. При производстве отдельных видов бетонных работ

При напорном бетонировании температура бетонной смеси должна быть от 5 до 20 °C  — по п.3.2.4.2  МДС 12-65.2014 «Проект производства работ. Бетонирование железобетонных конструкций здания (сооружения) с применением бетононасосов».

 

  1. В производстве бетонных и железобетонных изделий

При проектировании заводских технологических линий необходимо предусматривать начальную температуру бетонной смеси для конструкций, подвергаемых тепловой обработке, в пределах от 20 до 35 °C – Приложение И  «Тепловая обработка сборных конструкций» СП 46.13330.2012 «Мосты и трубы», а также п.8 приложение 8 СНиП 3.06.04-91 «Мосты и трубы».

Для остальных видов изделий и конструкций заводской готовности подобных требований нет.

 

Методика измерения температуры бетонной смеси приведена в ГОСТ 10181-2014 «Смеси бетонные. Методы испытаний».

  1. Средства испытания

Для определения температуры бетонной смеси применяют стеклянный термометр по ГОСТ 13646 «Термометры стеклянные ртутные для точных измерений. Технические условия» или другой прибор для измерения температуры с ценой деления не более 1,0 °C.

Допустимо использовать не ртутные жидкостные термометры, а также электронные термометры с соответствующей точностью измерений.

  1. Проведение испытания

2.1. Измерение температуры бетонной смеси должно быть начато не позднее чем через 2 мин после отбора пробы.

2.2. Прибор для измерения температуры погружают в бетонную смесь на глубину, определяемую техническим требованием к прибору для измерения температуры. Это требование особенно актуально для жидкостных термометров — необходимо обращать внимание на длину рабочей части термометра.

Согласно п 7.2 ГОСТ 7473-2010 «Смеси бетонные. Технические условия» температуру бетонной смеси измеряют термометром, погружая его в смесь на глубину не менее 5 см.

2.3. Толщина слоя бетонной смеси вокруг прибора для измерения температуры должна быть не менее 75 мм. Диаметр емкости, заполненной бетоном отсюда – не менее 16 см.

2.4. Температуру измеряют через 3 мин после погружения прибора для измерения температуры в бетонную смесь до ее стабилизации.

2.5. Температуру одной пробы бетонной смеси измеряют два раза с интервалом 5 мин. Разность между результатами двух определений температуры не должна превышать 2 °C.

Теплообмен пробы с окружающей средой до окончания измерений должен быть минимизирован. Температура бетонной смеси от момента отбора пробы до момента окончания испытания не должна изменяться более чем на 5 °C (п.3.6 ГОСТ 10181-2014).

 

Измерение температуры бетонной смеси в производстве производится при первой загрузке в смене (прил. Г ГОСТ 7473-2010). Согласно п.14.6.4 СП 78.13330.2012 температура цементобетонной смеси контролируется не реже одного раза в смену, а также при изменении качества материалов (в данном случае их температуры).

Температура бетонной смеси при укладке замеряется и записывается в журнал бетонных работ при укладке в зимних условиях, а также при бетонировании массивных конструкций согласно требованиям СП 70.13330.2012. По п.3.2.3.15  МДС 12-65.2014 «Проект производства работ. Бетонирование железобетонных конструкций здания (сооружения) с применением бетононасосов» температура бетонной смеси при укладке фиксируется в журнале работ независимо от сезона и вида конструкций.

Помимо требований нормативных документов необходимо учитывать и изменение свойств бетонной смеси от температуры (см. Шадрин В.В. Влияние температуры бетонной смеси на параметры пористости и морозостойкость бетонов с добавками. Автореферат диссертации. Ленинград, 1990. 25 с.)

stroytechnolog.ru

цемент

Колосниковый холодильник: 1 вентиляторы для подачи охлаждающего воздуха; 2 - привод; % - транспортёр для удаления просипи; 4-дробилка; 5 -система пылеулавливания

В зависимости от типа холодильника температура клинкера по выходе из него колеблется от 50 до 150°С. Горячий клинкер до полного остывания выдерживают на складах обычного или силосного типа, и эта операция называется "магазинирование". Склады являются крытыми помещениями, оборудованными грейферными кранами.

Свежеобожжённый клинкер может содержать некоторое количество свободного оксида кальция, вызывающего при твердении неравномерность изменения объёма изделий из такого цемента. Свободная известь при вылёживании клинкера частично или полностью загащивается за счёт влаги воздуха, что предотвращает её гашение в затвердевшем камне. Кроме того, возможны также процессы кристаллизации клинкерного стекла и нежелательный переход β С2S в γ -модификацию. За счёт этих превращений клинкер становится более рыхлым и повышается его размолоспособность.

6.3.5. Помол клинкера и получение цемента.

Цемент получают совместным помолом в шаровой мельнице клинкера, гипса (2-5%) и иногда - активных минеральных добавок (доменные гранулированные шлаки, диатомит, опока, трепел). Используемые компоненты требуют предварительной подготовки -дробления, а иногда и сушки (эта операция применяется к активным минеральным добавкам). Гипс дробят в обязательном порядке, клинкер также желательно дробить в конусных, ударно-отражательных или валковых дробилках для повышения эффективности работы цементной мельницы. Принципиально процесс помола клинкера не отличается от сухого помола сырьевых материалов и осуществляется в основном в многокамерных шаровых мельницах, работающих по открытому или замкнутому циклам, но их производительность ниже, чем у сырьевых мельниц. Более качественный продуют получается при помоле в замкнутом цикле при использовании центробежных сепараторов.

Активность и качество цемента существенно зависит от тонкости его помола. Клинкер представляет собой трудно размалываемый плотный спекшийся продукт, и расход электроэнергии на его помол велик. Поэтому важным является оптимизация тонкости измельчения с учетом энергозатрат (рис.20). Рис. 20. Зависимость производительности цементной мельницы и прочности цементного камня от тонкости помола цемента (удельной поверхности): 1 - производительность мельницы, 2 - предел прочности при сжатии цементного камня.

Для повышения производительности цементных мельниц и снижения энергозатрат необходима интенсивная аспирация помольного оборудования. Просасываемый воздух, с одной стороны, охлаждает материал, а с другой - захватывает и выносит наиболее тонкодисперсные частицы, что в целом повышает производительность мельниц на 2-6%.

При помоле цемента тонко измельченный материал может налипать на стенки мельницы и мелющие тела, что снижает производительность мельницы. Во избежание этого особенно эффективным является применение специальных добавок - интенсификаторов помола. К ним относятся различные классы органических соединений - спирты, фенолы» этаноламины и т.д. В отечественной промышленности наибольшее распространение получил способ интенсификации тонкого измельчения путём впрыскивания в первую камеру шаровой трубной мельницы 0,03-0,04% триэтаноламина и сульфитно-дрожжевой бражки (СДБ). При этом в мельнице создаётся адсорбционно-активная среда. Поверхность образующихся при измельчении новых частиц мгновенно адсорбирует поверхностно-активное вещество, что предотвращает их агрегирование и налипание на стенки мельницы и мелющие тела.

6.3.6. Хранение и отгрузка цемента.

Из мельницы цемент транспортируется либо пневмотранспортом, либо шнеками (при горизонтальном перемещении) и ковшовыми элеваторами (при вертикальном перемещении) в силосы. Пневматический способ транспортировки наиболее распространен, он проще и надёжнее в эксплуатации. При транспортировке на короткие расстояния применяют аэрожелоба, на дальние расстояния и в вертикальном направлении цемент подают по трубопроводам сжатым воздухом. Скорость движения аэросмеси по трубопроводам составляет 15-30 м/с, поэтому частицы цемента удерживаются во взвешенном состоянии в потоке воздуха. При входе в силос скорость резко снижается, и из аэросмеси выпадают частицы цемента. Силосы обычно представляют собой железобетонные цилиндрические башни диаметром от 8 до 18 м и высотой от 25 до 30 м. Ёмкость силоса диаметром 18 м достигает 10000 т цемента. Силосы устанавливают на железобетонных плитах или колоннах.

Ввиду того что цемент имеет склонность к слёживанию и

сводообразованию, разгрузка силосов производится пневматическим

способом. Для этого коническое днище силоса выкладывается

аэроплитками или покрывается прочной пористой тканью типа

-бельтинг . Под аэрорлитки или ткань по системе воздухопроводов

подается обезвоженный и охлажденный воздух под давлением 0,4-0,5 МПа

из расчёта 0,25 м3 мин на 1 м2 аэрируемой поверхности. Воздух, проходя

через поры аэроплиток, разделяется на отдельные тончайшие струйки,

которые разрыхляют портландцемент и дают ему возможность стекать по

уклону к разгрузочным механизмам. Отгружают портландцемент

потребителю навалом или в таре специальными разгрузочными

устройствами. При первом способе цемент выгружают из силосов в

цементовозы или контейнеры автомобильного, железнодорожного или

водного транспорта. При втором способе портландцемент механизировано

упаковывают в многослойные крафт-мешки, изготовленные из

водонепроницаемой бумаги.

6.3.7. Контроль производства цемента

Качество цемента зависит от строгого соблюдения всех

технологических требований производственного цикла и достижимо при

оптимальных режимах работы всех механизмов, агрегатов и установок.

Эффективный контроль производства предполагает систематичность и

использование современных методов и приборов, обеспечивающихточность и возможность автоматизации контрольных операций. Оперативное вмешательство в ход технологических процессов позволяет устранять отклонения от заданного режима, а также оптимизировать его.

Технологический контроль начинается с контроля химического я минералогического состава сырьевых материалов и их влажности. В сырьевом отделении проверяют состав смесей, тонкость измельчения, влажность, однородность и текучесть (при мокром способе производства). Контроль состава сырьевых смесей ведут по их титру (Т). т.е. по содержанию СаСОз, выраженному в процентах. Величина титра характеризует состав сырьевой смеси и связана с величиной коэффициента насыщения, С появлением точных методов экспресс-анализа в сырьевых смесях контролируют также оксидный состав - содержание CaO, SiО2 Ai2O3 и Fe2O3.

Контроль качества извести включает химический петрографический анализы, определение свободного оксида кальция и веса литра клинкера. Количество свободной извести не должно превышать 1% для обычного клинкера и 0,2-0,3% для клинкера, идущего на производство быстротвердеющего цемента.

Контроль работы отделения цементных мельниц включает проверку дозировки клинкера, гипса и добавок, влажности гипса и добавок (не выше 2%), а также температуры подаваемых в мельницу материалов (не выше 80°С) и температуры цемента на выходе из мельницы. Кроме того, каждые 1-2 часа контролируют тонкость помола цемента и проводят испытания на равномерность изменения объёма.

• Отгрузку цемента ведут на основе "гарантированной марки". Оценку марки цемента проводят по данным 1- 3-суточной прочности из проб. отбираемых из цементных мельниц ежечасно. Иногда гарантированную марку" определяют по прочности образцов, пропаренных в течение 4-х часов при температуре 95-98°С. Образцы готовят из раствора 1:1 и пропаривают по режиму, обеспечивающему прочность, соответствующую 28-суточной прочности. Для отгружаемой партии цемента выдаётся паспорт, в котором указана "гарантийная марка". При отгрузке цемента отбирают пробы для контрольных испытаний, которые хранят в ЦЗЛ в течение 3-х месяцев.

6.4. Твердение портландцемента

6.4.1. Гидратация клинкерных минералов

Портландцемент представляет собой полиминеральную систему, в которой каждый из основных клинкерных минералов вносит свой вклад в формирование прочной структуры цементного камня. При твердении портландцемента происходят сложные физико-химические процессы, являющиеся результатом взаимодействия клинкерных фаз и гипса с водой. Каждый клинкерный минерал вступает в реакцию с водой, образуя с характерной для него скоростью новые гидратные соединения. Поэтому технические свойства получающегося при твердении цемента камня зависят от фазового состава клинкера.

Вода в процессе взаимодействия с цементом насыщается переходящими в раствор известью, гипсом и щелочными соединениями, концентрация ионов которых в твердеющей массе оказывает большое влияние на состав гидратных новообразований. Чтобы получить представление о механизмах взаимодействия портландцемента сложного состава с водой, необходимо предварительно рассмотреть реакции гидратации отдельных клинкерных минералов.

Алит гидратируется с образованием гидросиликатов кальция переменного состава (0,8-1,5)CaO∙SiO∙(2,5-l,0)h3O (по классификация Богга: гидросиликаты кальция серии CSH(B)) и Са(ОН)2. Чем меньше концентрация СаО в окружающем водном растворе, тем меньше основность, т.е. мольное отношение CaO/SiO2, образующегося гидросиликата кальция. Процесс гидратации и гидролиза алита может быть выражен следующей схемой:

3CaO∙Si02 + mh3O → xCaO∙SiO2 ∙nH,0 + (3-х)Са(ОН)2

В зависимости от температуры среды, длительности твердения, вида исходных материалов и ряда других условий могут возникать различные по основности гидросиликатьт, которые отличаются составом, структурой и свойствами. При обычных температурах твердения и наличии насыщенного или пересыщенного раствора извести в окружающей среде образуется преимущественно двухкальциевый гидросиликат C2Sh3, состав которого варьируется в пределах - (l,7-2,0)CaO∙SiO2∙(2-4)h30. При пониженной концентрации Са(ОН) двухкальциевый гидросиликат переходит в менее основный (приближающийся к одноосновному) выше названный гидросиликат CSH(B). Снижение основности гидратных новообразований сопровождается выделением дополнительного количества Са(ОН)2. При температурах 80-120°С возникает сразу гидросиликат CSH(B), при 120-175°С образуется C2SH(A), а при 175-200°С - смесь C2SH(A), C2SH(C) и C3Sh4.

Основными носителями прочности в затвердевшем цементном камне являются низкоосновные гидросиликаты серии CSH(B), которые составляют 70-80% от общего количества новообразований. Гидросиликаты CSH(B) иногда называют тоберморитоподобными, так как их состав и строение близки к известному природному минералу тобермориту (C5S6H5). Эти гидросиликаты кальция кристаллизуются в виде высокодисперсных масс, сложенных из скрученных или свернутых в «рулоны» тончайших игл и волокон с длиной около 1 мкм. Прочность цементного камня, сложенного преимущественно из низкоосновных гидросиликатов, примерно вдвое выше, чем из высокоосновных фаз, так как в первых больше доля прочных ковалентных связей.

Белит гидратируется с образованием тех же гидросиликатов, что и алит, с той лишь разницей, что этот процесс не сопровождается выделением заметных количеств свободного гидроксида кальция. Условно реакция белита с водой может быть записана следующим образом:

2CaO∙SiO2 + 2Н2О → 2CaO∙SiO2∙2h3O

Трёхкальциевыq алюминат гидратируется в условиях обычных температур с образованием неустойчивых гексагональных промежуточных кристаллогидратов состава 2СаО∙Al2О3∙8Н2O и 4CaO∙Al2O3∙13h3O. Со временем они переходят в устойчивый кубический гидроалюминат кальция состава ЗСаО∙Аl2О3∙6Н2О, причём этот процесс ускоряется с ростом температуры.

Гидратация C3A протекает очень быстро, схватывание теста на его основе происходит в считанные минуты. Чтобы предотвратить явление "ложного схватывания" цемента, которое обусловлено быстрым схватыванием C3A, в состав цемента вводят 3-5% гипса, который существенно замедляет гидратацию трехкалыциевого алюмината. Это объясняется тем, что в присутствии гипса на поверхности частиц С3А идёт образование крупных игольчатых кристаллов гидросульфоалюмината кальция - эттрингита:

С3А + 3[CaSO4∙2h3O] +19Н2О → 3СаО∙Аl2О3∙3CaSO4∙31h3O

Кристаллы эттрингита образуют плотную оболочку на зернах C3S, препятствуя проникновению воды внутрь и замедляя гидратацию. Добавление оптимальных количеств гипса приводит к удлинению сроков схватывания цемента до 3-5 часов.

Однако кристаллизация эттрингита в уже затвердевшем камне, сопровождаемая существенным увеличением объёма, вызывает появление растягивающих напряжений, ведущих к снижению прочности, а иногда - и к разрушению цементного камня.

Четырёхкальциевый алюмоферрит гидратируется по уравнению:

4СаО∙А12О3∙Fе2O3 + mН2O → 3CaO∙Al2O3∙6h3O + CaO∙Fe2O3∙nh3O

В условиях, когда жидкая фаза твердеющего камня сильно пересыщена известью одноосновный гидроферрит кальция повышает свою основность и переходит в 4СаО∙Fe2О3∙13Н2О.

Клинкерные минералы гидратируются с различной скоростью и вносят различный вклад в прочность цементного камня. Скорость гидратации убывает в ряду: С3A - C4AF – C3S - β-C2S.

Скорость растворения цементного порошка и все последующие процессы твердения цемента зависят от минералогического состава цемента и тонкости помола. Чем мельче зёрна, тем выше суммарная удельная поверхность материала, а так как взаимодействие с водой начинается с поверхности, то тонкий помол интенсифицирует гидратацию вяжущего.

По мере развития гидратационных процессов цементные зёрна обрастают "шубой" гидратных новообразований, что затрудняет диффузию воды внутрь частиц и тем самым замедляет дальнейшую гидратацию. Это проявляется в постепенном замедлении нарастания прочностных характеристик камня. Даже через 50 лет в цементном камне примерно 30% частиц вяжущего в составе камня оказываются непрогидратировавшими. Чем мельче зёрна, тем большая их часть вступает в реакции с водой, потому тонкий помол цементов способствует существенному улучшению вяжущих свойств.

6.4.2. Синтез прочности цементного камня

Превращение цемента в камневидное тело с высокой, прогрессирующей во времени прочностью является сложным процессом. Он заключается в том, что цементный порошок, замешанный с водой, образует пластичное тесто, которое постепенно теряет свою подвижность, загустевает и уплотняется до полной потери пластичности, при этом образуется плотное тело без заметной прочности. Это - период схватывания, он является начальной стадией твердения. Начало схватывания у большинства цементов наблюдается через 1,0-1,5 ч, а конец - через 4-5 ч после затворения цемента водой. Затем наступает вторая стадия твердения, характеризующаяся нарастанием прочности. Скорость прироста прочности по истечению некоторого времени уменьшается, а в достаточно дальние сроки - практически становится равной нулю.

Механизм твердения цемента может быть объяснен с позиций ранее рассмотренной теории А.А. Байкова. Эта схема твердения признается большинством исследователей. Однако в механизм протекания отдельных этапов твердения в настоящее время внесены некоторые уточнения. Кроме того, как указывалось выше, цемент - полиминеральная система, и каждый минерал вступает в реакции гидратации по своей схеме, со своей скоростью и вносит свой вклад в формирование общ.структуры камня.

Рис. 21 иллюстрирует процесс нарастания предела прочности на сжатие основных клинкерных минералов в течение года. Как следует из рис. 21, максимальной прочностью характеризуются алитовые образцы, минимальной - образцы, приготовленные па основе чистого трёхкальциевого алюмината.

Интенсивный рост прочности цементного камня происходит лишь в первые 7 суток твердения. К 28-ми суткам образцы из индивидуальных клинкерных минералов и, соответственно, цементный камень набирают примерно 90% конечной прочности, и дальнейшее твердение резко замедляется.

П.А. Ребиндер и Е.Е. Сегалова разработали теорию твердения цемента с позиций физико-химической механики процессов структурообразования в дисперсных системах. В соответствие с этой теорией вначале происходит растворение термодинамически неустойчивых в воде клинкерных фаз и выделение из пересыщенного раствора стабильных в этих условиях мельчайших кристалликов гидратных соединений. Эти кристаллики являются зародышами новой фазы. Сцепляясь с негидратированными частицами вяжущего вещества, они образуют пространственную сетку - коагуляционную структуру. Прочность этой начальной структуры мала, так как обусловлена слабыми ван-дер-ваальсовыми силами сцепления. Этот этап твердения соответствует периоду схватывания. Основную роль на данном этапе играют крупные игольчатые кристаллы гидросульфоалюмината кальция (эттрингита) и удлиненные волокнистые кристаллы гидросиликатов кальция, но количество последних пока невелико. Продолжительность этого этапа при твердении в условиях комнатных температур составляет около 1 суток. К этому времени завершается образование эггрингита в результате полного связывания содержащегося в цементе гипса.

В течение следующего периода твердения происходит постепенное заполнение пор продуктами гидратации клинкерных минералов и уплотнение первоначально возникшей структуры цементного камня. Прочность этой структуры существенно возрастает в результате образования всё большего количества гидросиликатов кальция, которые заполняют имеющиеся поры. Таким образом, сначала формируется каркас кристаллизационной структуры за счёт возникновения контактов срастания между отдельными кристаллами, а затем происходит обрастание каркаса, т.е. рост составляющих его кристаллов. Отсюда следует, что прочность структуры определяется прежде всего прочностью контактов срастания между кристаллами гидратных фаз.

В конечном счёте цементный камень представляет собой неоднородную систему - сложный конгломерат кристаллических и коллоидных гидратных образований, непрореагировавших остатков цементных зерен, тонкораспределённых пор, заполненных водой и воздухом. По строению он напоминает обычный бетон, поэтому иногда его называют микробетоном. Пористость камня составляет до 28% от общего объёма. Твёрдое вещество цементного камня обладает очень высокой удельной поверхностью - примерно 220 м2/г (в расчёте на сухое вещество).

Химически цементный камень также неоднороден. Он состоит в основном из четырёх основных гидратных фаз, возникающих в различном количестве в процессе формирования структуры. Важнейшими компонентами структуры являются гидросиликагы кальция, эттрингит, гидроксид кальция и гидроалюминаты кальция. Как указывалось выше, основной компонент камня (около 75%) - это высокодисперсные, слабозакристаллизованные, низкоосновные гидросиликаты кальция с частицами коллоидных размеров, поэтому эту фазу называют тоберморитоподобным цементным гелем. Именно эта составляющая имеет наибольшую удельную поверхность. Основными кристаллическими (неколлоидными) фазами камня являются эттрингит и Сa(OH)2, возникающий при гидратации алита. Количество гидроксида кальция составляет обычно 20-30% от массы сухого цементного геля.

Таким образом, цементный камень представляет собой композиционный материал, в котором роль пластичной матрицы играет гелевидная фаза, а роль жёсткой упрочняющей арматуры - относительно крупные кристаллы новообразований и зерна непрореагировавшего цемента. Такая структура определяет особенности и характер разрушения камня и, следовательно, возможность его использования.

6.4.3. Твердение цемента при повышенных температурах.

Значительная часть цементов используется на занодах железобетонных изделия (ЖБИ), где изделия подвергаются обязательному пропариванию при температуре 80-90ºС и атмосферном давлении. Эта операция необходима для сокращения технологического цикла изготовления изделий. За 6-10 ч цементный камень и бетон набирают примерно 75% марочной прочности и направляются на стройплощадку, где процессы твердения продолжаются уже в обычных условиях.

При пропаривании общий характер гидратации клинкерных минералов не меняется, но повышение температуры заметно ускоряет реакции. Кроме того, в этих условиях достигаются большие пересыщения в жидкой фазе твердеющего цементного камня, что ведёт за собой образование большего количества зародышей новых гидратных фаз в единице объёма. Однако конечные размеры кристалликов новообразований меньше и, соответственно, меньше прочность контактов срастания, чем при твердении в условиях нормальных температур. В результате пропаренный цементный камень не добирает 10-15% своей прочности по сравнению с цементом такого же состава, но твердевшим при комнатной температуре.

Наиболее эффективны для тепловлажностной обработки цементы, обеспечивающие наибольшую прочность бетона в заданные сроки при минимально возможном их расходе. Прогрев в большей степени ускоряет твердение бетонов на смешанных и малоактивных цементах. Но в заводской практике для получения максимальной прочности бетона в более короткие сроки всё же применяют в основном портландцементы. Эффективность тепловлажностной обработки зависит от минералогического состава цемента. При кратковременном пропаривании лучшие результаты дают образцы бетонов на высокоалитовых цементах с содержанием C3S 50-60% и С3А не более 8%. При правильно установленном режиме тепловой обработки они позволяют после пропаривания и последующего естественного твердения бетона получить прочность не ниже, чем у бетонов нормального твердения в 28-суточном возрасте. Нецелесообразно использование при пропаривании высокоалюминатных цементов, недобор прочности которых к 28 суткам составляет примерно 20% по сравнению с тем же бетоном нормального твердения.

Химическое взаимодействие между клинкерными минералами и заполнителем (песком) при пропаривании не происходит, но оно возможно при более высоких температурах в условиях автоклавной обработки при повышенном давлении водяного пара. В последнем случае тонкомолотый кварцевый песок (его вводят в количестве до 30% в автоклавные материалы) достаточно активно взаимодействует с алитом и белитом. В результате этого вместо двухкальциевых гидросиликатов, дающих малопрочный сросток, возникают преимущественно волокнистые низкоосновные фазы серии CSH(B), обеспечивающие формирование высокопрочной структуры. Кремнезём наполнителя при автоклавировании активно связывает выделяющуюся при гидратации алита известь с образованием дополнительных количеств низкоосновных гидросиликатов кальция, и в целом количество продуктов гидратации в этих условиях выше, чем при естественном твердении. В результате автоклавная обработка бетона не только повышает его прочность, но также снижает усадку изделий, а в отдельных случаях повышает коррозионную устойчивость бетонов.

6.5. Строительно-технические свойства и применение портландцемента.

Портландцемент является основным видом вяжущих материалов, что обусловлено его ценными строительно-техническими свойствами. Совокупность этих свойств для отдельных видов портландцемента определяет области применения этих вяжуших.

Плотность и объёмная масса. Величина плотности позволяет отличать бездобавочные портландцементы от пуццолановых и шлаковых цементов, так как из всех этих вяжущих бездобавочный цемент обладает самой высокой плотностью (3,05-3,2 г/см3). Для цементов с добавками плотность составляет 2,7-2,9 г/см . Плотность порошка портландцемента в рыхлом состоянии равна 900-1100 г/л, а в уплотнённом - 1400-1700 г/л. Величина плотности зависит в основном от тонкости помола портландцемента: она тем меньше, чем выше дисперсность порошка.

Тонкость помола оценивается двумя показателями: количеством цементного порошка (в % от навески), прошедшего через сито с определённым размером отверстий (метод ситового анализа), и средневзвешенной удельной поверхностью зёрен.

Согласно ГОСТ цемент должен иметь такую тонкость помола, чтобы через сито № 008 проходило не менее 85% от массы пробы или остаток на сите не превышал 15%. Большинство заводских цементов имеют остаток на сите № 008 8-12%. Удельная поверхность цементов заводского помола составляет 2500-3000 см2/г.

Увеличение удельной поверхности цемента выше 3000-3500 см2/г связано со значительным снижением производительности мельниц, хотя и приводит к некоторому повышению активности цемента в ранние сроки твердения. Тонкость помола цемента влияет на скорость его схватывания и твердения, а также определяет степень его использования в растворах и бетонах. Цемент, состоящий в основном из зёрен фракции 0-3 мкм, уже через сутки достигает высокой прочности, однако заметного повышения скорости роста в дальнейшем не наблюдается. Более крупные зёрна твердеют в начальные сроки медленнее, но к 28-ми суткам достигают такой же прочности, что и зёрна фракции 0-3 мкм, и продолжают эффективно твердеть до 90 суток. Цемент более грубого помола гидратируется медленнее, однако при этом достигается большая конечная прочность, нежели при более тонком помоле. Этот факт объясняется тем, что в ходе медленной гидратации образуется большее количество длинноволокнистых гидросиликатов кальция, которые хорошо срастаются друг с другом. Кроме того, в этом случае больше число контактов срастания. Слишком тонкий помол может привести даже к снижению прочности, так как он приводит к росту водопотребности цемента, усиленному тепловыделению и развитию усадочных деформаций.

Цементы, измельчённые до одинаковой удельной поверхности в различных помольных агрегатах, могут заметно отличаться по прочности и водопотребности. Это связано с тем, что в мельницах разных типов способ измельчения разный, что влечёт за собой различия в гранулометрическом составе. Более желателен полидисперсный состав портландцемента, когда в нём присутствуют как мелкие (до 40 мкм), так и крупные (более 80 мкм) частицы. Это обеспечивает более плотную упаковку частиц и, следовательно, более высокую прочность камня. Мелкие частицы интенсивно гидратируются в начальный период твердения, а крупные - способствуют нарастанию прочностных характеристик в более поздние сроки.

studfiles.net

Портландцемент (транспортировка и хранение) - Минеральные вяжущие вещества

На рисунке, а показан пневмомеханический разгрузчик, на рисунке б — схема его установки.

Пневмомеханический разгрузчик цемента

Пневмомеханический разгрузчик цемента: а — разгрузчик, б — схема установки.

Автотранспортные перевозки цемента осуществляются при помощи специальных машин — цементовозов.

Загружают машины через верхнюю часть горловины, а выгружают при помощи сжатого воздуха, поступающего от компрессора, который установлен на цементовозе. Хранят цемент в инвентарных металлических емкостях (бункерах).

Цемент при транспортировании и хранении нужно всячески оберегать от воздействия влаги и загрязнения посторонними примесями.

Цемент каждой марки и каждого вида хранят в отдельных бункерах. Длительное хранение отрицательно влияет на прочность цемента. Установлено, что после трехмесячного хранения цемент теряет до 20% прочности, после шестимесячного — до 30%, а после года — до 40% прочности.

Портландцемент — одно из самых распространенных вяжущих; он составляет около 50% общего выпуска цемента в СССР. Применяют его главным образом при возведении бетонных и железобетонных конструкций и сооружений.

В отделочных работах вследствие высокой стоимости этого материала употребляют портландцемент низких марок или цемент, приготовленный на его основе.

«Материаловедение для штукатуров,плиточников, мозаичников»,А.В.Александровский

Воздушная известь была известна еще в древней Руси. Секрет ее приготовления знали немногие умельцы, которые передавали его из поколения в поколение. В настоящее время воздушную известь широко применяют в строительстве, особенно в штукатурных работах. Получение комовой негашеной извести Воздушная известь (ГОСТ 9179 — 59) является продуктом умеренного (не доводимого до спекания) обжига горных пород: известняков,…

Гипс является одним из широко распространенных воздушных вяжущих. Производство его неуклонно расширяется и к концу семилетки достигнет 9,9 млн. т. Исходным сырьем для получения гипса служит природный гипсовый камень, который в нашей стране встречается во многих местах. Только в пределах Российской федерации насчитывается более 500 промышленных месторождений гипсового камня. Наиболее богатые месторождения находятся на Урале,…

Твердение цемента можно ускорить добавлением в цементный раствор хлористого кальция (СаСl2) или 1 — 2-процентного раствора соляной кислоты (НСl). Хлористого кальция вводят 1,5 — 3% от веса цемента в зависимости от вида цемента. Правильно подобранной добавкой можно увеличить прочность раствора трехдневного возраста почти в два раза. Замедлить схватывание цемента можно, добавляя сернокислое окисное железо или…

По химическому составу материалы отличаются друг от друга лишь разным количественным соотношением между окисью кальция (СаО) и окисью магния (MgO). Встречаются известняки совершенно не содержащие окиси магния. В доломита количество MgO доходит до 40%. Кроме того, для приготовления воздушной извести используются также отходы некоторых химических предприятий. Известь получают, обжигая горные породы в вертикальных шахтных или…

Для получения строительного гипса природный гипсовый камень обжигают в шахтных печах, сушильных барабанах и специальных аппаратах в струе горячего воздуха во взвешенном состоянии. Наиболее распространено получение гипса в гипсоварочных котлах. На рисунке показана схема гипсоварочного котла емкостью 25 м3. Основная часть котла — стальной цилиндр с шестью попарно расположенными горизонтальными жаровыми трубами. Схема гипсоварочного котла…

www.ktovdome.ru

цемент

Колосниковый холодильник: 1 вентиляторы для подачи охлаждающего воздуха; 2 - привод; % - транспортёр для удаления просипи; 4-дробилка; 5 -система пылеулавливания

В зависимости от типа холодильника температура клинкера по выходе из него колеблется от 50 до 150°С. Горячий клинкер до полного остывания выдерживают на складах обычного или силосного типа, и эта операция называется "магазинирование". Склады являются крытыми помещениями, оборудованными грейферными кранами.

Свежеобожжённый клинкер может содержать некоторое количество свободного оксида кальция, вызывающего при твердении неравномерность изменения объёма изделий из такого цемента. Свободная известь при вылёживании клинкера частично или полностью загащивается за счёт влаги воздуха, что предотвращает её гашение в затвердевшем камне. Кроме того, возможны также процессы кристаллизации клинкерного стекла и нежелательный переход β С2S в γ -модификацию. За счёт этих превращений клинкер становится более рыхлым и повышается его размолоспособность.

6.3.5. Помол клинкера и получение цемента.

Цемент получают совместным помолом в шаровой мельнице клинкера, гипса (2-5%) и иногда - активных минеральных добавок (доменные гранулированные шлаки, диатомит, опока, трепел). Используемые компоненты требуют предварительной подготовки -дробления, а иногда и сушки (эта операция применяется к активным минеральным добавкам). Гипс дробят в обязательном порядке, клинкер также желательно дробить в конусных, ударно-отражательных или валковых дробилках для повышения эффективности работы цементной мельницы. Принципиально процесс помола клинкера не отличается от сухого помола сырьевых материалов и осуществляется в основном в многокамерных шаровых мельницах, работающих по открытому или замкнутому циклам, но их производительность ниже, чем у сырьевых мельниц. Более качественный продуют получается при помоле в замкнутом цикле при использовании центробежных сепараторов.

Активность и качество цемента существенно зависит от тонкости его помола. Клинкер представляет собой трудно размалываемый плотный спекшийся продукт, и расход электроэнергии на его помол велик. Поэтому важным является оптимизация тонкости измельчения с учетом энергозатрат (рис.20). Рис. 20. Зависимость производительности цементной мельницы и прочности цементного камня от тонкости помола цемента (удельной поверхности): 1 - производительность мельницы, 2 - предел прочности при сжатии цементного камня.

Для повышения производительности цементных мельниц и снижения энергозатрат необходима интенсивная аспирация помольного оборудования. Просасываемый воздух, с одной стороны, охлаждает материал, а с другой - захватывает и выносит наиболее тонкодисперсные частицы, что в целом повышает производительность мельниц на 2-6%.

При помоле цемента тонко измельченный материал может налипать на стенки мельницы и мелющие тела, что снижает производительность мельницы. Во избежание этого особенно эффективным является применение специальных добавок - интенсификаторов помола. К ним относятся различные классы органических соединений - спирты, фенолы» этаноламины и т.д. В отечественной промышленности наибольшее распространение получил способ интенсификации тонкого измельчения путём впрыскивания в первую камеру шаровой трубной мельницы 0,03-0,04% триэтаноламина и сульфитно-дрожжевой бражки (СДБ). При этом в мельнице создаётся адсорбционно-активная среда. Поверхность образующихся при измельчении новых частиц мгновенно адсорбирует поверхностно-активное вещество, что предотвращает их агрегирование и налипание на стенки мельницы и мелющие тела.

6.3.6. Хранение и отгрузка цемента.

Из мельницы цемент транспортируется либо пневмотранспортом, либо шнеками (при горизонтальном перемещении) и ковшовыми элеваторами (при вертикальном перемещении) в силосы. Пневматический способ транспортировки наиболее распространен, он проще и надёжнее в эксплуатации. При транспортировке на короткие расстояния применяют аэрожелоба, на дальние расстояния и в вертикальном направлении цемент подают по трубопроводам сжатым воздухом. Скорость движения аэросмеси по трубопроводам составляет 15-30 м/с, поэтому частицы цемента удерживаются во взвешенном состоянии в потоке воздуха. При входе в силос скорость резко снижается, и из аэросмеси выпадают частицы цемента. Силосы обычно представляют собой железобетонные цилиндрические башни диаметром от 8 до 18 м и высотой от 25 до 30 м. Ёмкость силоса диаметром 18 м достигает 10000 т цемента. Силосы устанавливают на железобетонных плитах или колоннах.

Ввиду того что цемент имеет склонность к слёживанию и

сводообразованию, разгрузка силосов производится пневматическим

способом. Для этого коническое днище силоса выкладывается

аэроплитками или покрывается прочной пористой тканью типа

-бельтинг . Под аэрорлитки или ткань по системе воздухопроводов

подается обезвоженный и охлажденный воздух под давлением 0,4-0,5 МПа

из расчёта 0,25 м3 мин на 1 м2 аэрируемой поверхности. Воздух, проходя

через поры аэроплиток, разделяется на отдельные тончайшие струйки,

которые разрыхляют портландцемент и дают ему возможность стекать по

уклону к разгрузочным механизмам. Отгружают портландцемент

потребителю навалом или в таре специальными разгрузочными

устройствами. При первом способе цемент выгружают из силосов в

цементовозы или контейнеры автомобильного, железнодорожного или

водного транспорта. При втором способе портландцемент механизировано

упаковывают в многослойные крафт-мешки, изготовленные из

водонепроницаемой бумаги.

6.3.7. Контроль производства цемента

Качество цемента зависит от строгого соблюдения всех

технологических требований производственного цикла и достижимо при

оптимальных режимах работы всех механизмов, агрегатов и установок.

Эффективный контроль производства предполагает систематичность и

использование современных методов и приборов, обеспечивающихточность и возможность автоматизации контрольных операций. Оперативное вмешательство в ход технологических процессов позволяет устранять отклонения от заданного режима, а также оптимизировать его.

Технологический контроль начинается с контроля химического я минералогического состава сырьевых материалов и их влажности. В сырьевом отделении проверяют состав смесей, тонкость измельчения, влажность, однородность и текучесть (при мокром способе производства). Контроль состава сырьевых смесей ведут по их титру (Т). т.е. по содержанию СаСОз, выраженному в процентах. Величина титра характеризует состав сырьевой смеси и связана с величиной коэффициента насыщения, С появлением точных методов экспресс-анализа в сырьевых смесях контролируют также оксидный состав - содержание CaO, SiО2 Ai2O3 и Fe2O3.

Контроль качества извести включает химический петрографический анализы, определение свободного оксида кальция и веса литра клинкера. Количество свободной извести не должно превышать 1% для обычного клинкера и 0,2-0,3% для клинкера, идущего на производство быстротвердеющего цемента.

Контроль работы отделения цементных мельниц включает проверку дозировки клинкера, гипса и добавок, влажности гипса и добавок (не выше 2%), а также температуры подаваемых в мельницу материалов (не выше 80°С) и температуры цемента на выходе из мельницы. Кроме того, каждые 1-2 часа контролируют тонкость помола цемента и проводят испытания на равномерность изменения объёма.

• Отгрузку цемента ведут на основе "гарантированной марки". Оценку марки цемента проводят по данным 1- 3-суточной прочности из проб. отбираемых из цементных мельниц ежечасно. Иногда гарантированную марку" определяют по прочности образцов, пропаренных в течение 4-х часов при температуре 95-98°С. Образцы готовят из раствора 1:1 и пропаривают по режиму, обеспечивающему прочность, соответствующую 28-суточной прочности. Для отгружаемой партии цемента выдаётся паспорт, в котором указана "гарантийная марка". При отгрузке цемента отбирают пробы для контрольных испытаний, которые хранят в ЦЗЛ в течение 3-х месяцев.

6.4. Твердение портландцемента

6.4.1. Гидратация клинкерных минералов

Портландцемент представляет собой полиминеральную систему, в которой каждый из основных клинкерных минералов вносит свой вклад в формирование прочной структуры цементного камня. При твердении портландцемента происходят сложные физико-химические процессы, являющиеся результатом взаимодействия клинкерных фаз и гипса с водой. Каждый клинкерный минерал вступает в реакцию с водой, образуя с характерной для него скоростью новые гидратные соединения. Поэтому технические свойства получающегося при твердении цемента камня зависят от фазового состава клинкера.

Вода в процессе взаимодействия с цементом насыщается переходящими в раствор известью, гипсом и щелочными соединениями, концентрация ионов которых в твердеющей массе оказывает большое влияние на состав гидратных новообразований. Чтобы получить представление о механизмах взаимодействия портландцемента сложного состава с водой, необходимо предварительно рассмотреть реакции гидратации отдельных клинкерных минералов.

Алит гидратируется с образованием гидросиликатов кальция переменного состава (0,8-1,5)CaO∙SiO∙(2,5-l,0)h3O (по классификация Богга: гидросиликаты кальция серии CSH(B)) и Са(ОН)2. Чем меньше концентрация СаО в окружающем водном растворе, тем меньше основность, т.е. мольное отношение CaO/SiO2, образующегося гидросиликата кальция. Процесс гидратации и гидролиза алита может быть выражен следующей схемой:

3CaO∙Si02 + mh3O → xCaO∙SiO2 ∙nH,0 + (3-х)Са(ОН)2

В зависимости от температуры среды, длительности твердения, вида исходных материалов и ряда других условий могут возникать различные по основности гидросиликатьт, которые отличаются составом, структурой и свойствами. При обычных температурах твердения и наличии насыщенного или пересыщенного раствора извести в окружающей среде образуется преимущественно двухкальциевый гидросиликат C2Sh3, состав которого варьируется в пределах - (l,7-2,0)CaO∙SiO2∙(2-4)h30. При пониженной концентрации Са(ОН) двухкальциевый гидросиликат переходит в менее основный (приближающийся к одноосновному) выше названный гидросиликат CSH(B). Снижение основности гидратных новообразований сопровождается выделением дополнительного количества Са(ОН)2. При температурах 80-120°С возникает сразу гидросиликат CSH(B), при 120-175°С образуется C2SH(A), а при 175-200°С - смесь C2SH(A), C2SH(C) и C3Sh4.

Основными носителями прочности в затвердевшем цементном камне являются низкоосновные гидросиликаты серии CSH(B), которые составляют 70-80% от общего количества новообразований. Гидросиликаты CSH(B) иногда называют тоберморитоподобными, так как их состав и строение близки к известному природному минералу тобермориту (C5S6H5). Эти гидросиликаты кальция кристаллизуются в виде высокодисперсных масс, сложенных из скрученных или свернутых в «рулоны» тончайших игл и волокон с длиной около 1 мкм. Прочность цементного камня, сложенного преимущественно из низкоосновных гидросиликатов, примерно вдвое выше, чем из высокоосновных фаз, так как в первых больше доля прочных ковалентных связей.

Белит гидратируется с образованием тех же гидросиликатов, что и алит, с той лишь разницей, что этот процесс не сопровождается выделением заметных количеств свободного гидроксида кальция. Условно реакция белита с водой может быть записана следующим образом:

2CaO∙SiO2 + 2Н2О → 2CaO∙SiO2∙2h3O

Трёхкальциевыq алюминат гидратируется в условиях обычных температур с образованием неустойчивых гексагональных промежуточных кристаллогидратов состава 2СаО∙Al2О3∙8Н2O и 4CaO∙Al2O3∙13h3O. Со временем они переходят в устойчивый кубический гидроалюминат кальция состава ЗСаО∙Аl2О3∙6Н2О, причём этот процесс ускоряется с ростом температуры.

Гидратация C3A протекает очень быстро, схватывание теста на его основе происходит в считанные минуты. Чтобы предотвратить явление "ложного схватывания" цемента, которое обусловлено быстрым схватыванием C3A, в состав цемента вводят 3-5% гипса, который существенно замедляет гидратацию трехкалыциевого алюмината. Это объясняется тем, что в присутствии гипса на поверхности частиц С3А идёт образование крупных игольчатых кристаллов гидросульфоалюмината кальция - эттрингита:

С3А + 3[CaSO4∙2h3O] +19Н2О → 3СаО∙Аl2О3∙3CaSO4∙31h3O

Кристаллы эттрингита образуют плотную оболочку на зернах C3S, препятствуя проникновению воды внутрь и замедляя гидратацию. Добавление оптимальных количеств гипса приводит к удлинению сроков схватывания цемента до 3-5 часов.

Однако кристаллизация эттрингита в уже затвердевшем камне, сопровождаемая существенным увеличением объёма, вызывает появление растягивающих напряжений, ведущих к снижению прочности, а иногда - и к разрушению цементного камня.

Четырёхкальциевый алюмоферрит гидратируется по уравнению:

4СаО∙А12О3∙Fе2O3 + mН2O → 3CaO∙Al2O3∙6h3O + CaO∙Fe2O3∙nh3O

В условиях, когда жидкая фаза твердеющего камня сильно пересыщена известью одноосновный гидроферрит кальция повышает свою основность и переходит в 4СаО∙Fe2О3∙13Н2О.

Клинкерные минералы гидратируются с различной скоростью и вносят различный вклад в прочность цементного камня. Скорость гидратации убывает в ряду: С3A - C4AF – C3S - β-C2S.

Скорость растворения цементного порошка и все последующие процессы твердения цемента зависят от минералогического состава цемента и тонкости помола. Чем мельче зёрна, тем выше суммарная удельная поверхность материала, а так как взаимодействие с водой начинается с поверхности, то тонкий помол интенсифицирует гидратацию вяжущего.

По мере развития гидратационных процессов цементные зёрна обрастают "шубой" гидратных новообразований, что затрудняет диффузию воды внутрь частиц и тем самым замедляет дальнейшую гидратацию. Это проявляется в постепенном замедлении нарастания прочностных характеристик камня. Даже через 50 лет в цементном камне примерно 30% частиц вяжущего в составе камня оказываются непрогидратировавшими. Чем мельче зёрна, тем большая их часть вступает в реакции с водой, потому тонкий помол цементов способствует существенному улучшению вяжущих свойств.

6.4.2. Синтез прочности цементного камня

Превращение цемента в камневидное тело с высокой, прогрессирующей во времени прочностью является сложным процессом. Он заключается в том, что цементный порошок, замешанный с водой, образует пластичное тесто, которое постепенно теряет свою подвижность, загустевает и уплотняется до полной потери пластичности, при этом образуется плотное тело без заметной прочности. Это - период схватывания, он является начальной стадией твердения. Начало схватывания у большинства цементов наблюдается через 1,0-1,5 ч, а конец - через 4-5 ч после затворения цемента водой. Затем наступает вторая стадия твердения, характеризующаяся нарастанием прочности. Скорость прироста прочности по истечению некоторого времени уменьшается, а в достаточно дальние сроки - практически становится равной нулю.

Механизм твердения цемента может быть объяснен с позиций ранее рассмотренной теории А.А. Байкова. Эта схема твердения признается большинством исследователей. Однако в механизм протекания отдельных этапов твердения в настоящее время внесены некоторые уточнения. Кроме того, как указывалось выше, цемент - полиминеральная система, и каждый минерал вступает в реакции гидратации по своей схеме, со своей скоростью и вносит свой вклад в формирование общ.структуры камня.

Рис. 21 иллюстрирует процесс нарастания предела прочности на сжатие основных клинкерных минералов в течение года. Как следует из рис. 21, максимальной прочностью характеризуются алитовые образцы, минимальной - образцы, приготовленные па основе чистого трёхкальциевого алюмината.

Интенсивный рост прочности цементного камня происходит лишь в первые 7 суток твердения. К 28-ми суткам образцы из индивидуальных клинкерных минералов и, соответственно, цементный камень набирают примерно 90% конечной прочности, и дальнейшее твердение резко замедляется.

П.А. Ребиндер и Е.Е. Сегалова разработали теорию твердения цемента с позиций физико-химической механики процессов структурообразования в дисперсных системах. В соответствие с этой теорией вначале происходит растворение термодинамически неустойчивых в воде клинкерных фаз и выделение из пересыщенного раствора стабильных в этих условиях мельчайших кристалликов гидратных соединений. Эти кристаллики являются зародышами новой фазы. Сцепляясь с негидратированными частицами вяжущего вещества, они образуют пространственную сетку - коагуляционную структуру. Прочность этой начальной структуры мала, так как обусловлена слабыми ван-дер-ваальсовыми силами сцепления. Этот этап твердения соответствует периоду схватывания. Основную роль на данном этапе играют крупные игольчатые кристаллы гидросульфоалюмината кальция (эттрингита) и удлиненные волокнистые кристаллы гидросиликатов кальция, но количество последних пока невелико. Продолжительность этого этапа при твердении в условиях комнатных температур составляет около 1 суток. К этому времени завершается образование эггрингита в результате полного связывания содержащегося в цементе гипса.

В течение следующего периода твердения происходит постепенное заполнение пор продуктами гидратации клинкерных минералов и уплотнение первоначально возникшей структуры цементного камня. Прочность этой структуры существенно возрастает в результате образования всё большего количества гидросиликатов кальция, которые заполняют имеющиеся поры. Таким образом, сначала формируется каркас кристаллизационной структуры за счёт возникновения контактов срастания между отдельными кристаллами, а затем происходит обрастание каркаса, т.е. рост составляющих его кристаллов. Отсюда следует, что прочность структуры определяется прежде всего прочностью контактов срастания между кристаллами гидратных фаз.

В конечном счёте цементный камень представляет собой неоднородную систему - сложный конгломерат кристаллических и коллоидных гидратных образований, непрореагировавших остатков цементных зерен, тонкораспределённых пор, заполненных водой и воздухом. По строению он напоминает обычный бетон, поэтому иногда его называют микробетоном. Пористость камня составляет до 28% от общего объёма. Твёрдое вещество цементного камня обладает очень высокой удельной поверхностью - примерно 220 м2/г (в расчёте на сухое вещество).

Химически цементный камень также неоднороден. Он состоит в основном из четырёх основных гидратных фаз, возникающих в различном количестве в процессе формирования структуры. Важнейшими компонентами структуры являются гидросиликагы кальция, эттрингит, гидроксид кальция и гидроалюминаты кальция. Как указывалось выше, основной компонент камня (около 75%) - это высокодисперсные, слабозакристаллизованные, низкоосновные гидросиликаты кальция с частицами коллоидных размеров, поэтому эту фазу называют тоберморитоподобным цементным гелем. Именно эта составляющая имеет наибольшую удельную поверхность. Основными кристаллическими (неколлоидными) фазами камня являются эттрингит и Сa(OH)2, возникающий при гидратации алита. Количество гидроксида кальция составляет обычно 20-30% от массы сухого цементного геля.

Таким образом, цементный камень представляет собой композиционный материал, в котором роль пластичной матрицы играет гелевидная фаза, а роль жёсткой упрочняющей арматуры - относительно крупные кристаллы новообразований и зерна непрореагировавшего цемента. Такая структура определяет особенности и характер разрушения камня и, следовательно, возможность его использования.

6.4.3. Твердение цемента при повышенных температурах.

Значительная часть цементов используется на занодах железобетонных изделия (ЖБИ), где изделия подвергаются обязательному пропариванию при температуре 80-90ºС и атмосферном давлении. Эта операция необходима для сокращения технологического цикла изготовления изделий. За 6-10 ч цементный камень и бетон набирают примерно 75% марочной прочности и направляются на стройплощадку, где процессы твердения продолжаются уже в обычных условиях.

При пропаривании общий характер гидратации клинкерных минералов не меняется, но повышение температуры заметно ускоряет реакции. Кроме того, в этих условиях достигаются большие пересыщения в жидкой фазе твердеющего цементного камня, что ведёт за собой образование большего количества зародышей новых гидратных фаз в единице объёма. Однако конечные размеры кристалликов новообразований меньше и, соответственно, меньше прочность контактов срастания, чем при твердении в условиях нормальных температур. В результате пропаренный цементный камень не добирает 10-15% своей прочности по сравнению с цементом такого же состава, но твердевшим при комнатной температуре.

Наиболее эффективны для тепловлажностной обработки цементы, обеспечивающие наибольшую прочность бетона в заданные сроки при минимально возможном их расходе. Прогрев в большей степени ускоряет твердение бетонов на смешанных и малоактивных цементах. Но в заводской практике для получения максимальной прочности бетона в более короткие сроки всё же применяют в основном портландцементы. Эффективность тепловлажностной обработки зависит от минералогического состава цемента. При кратковременном пропаривании лучшие результаты дают образцы бетонов на высокоалитовых цементах с содержанием C3S 50-60% и С3А не более 8%. При правильно установленном режиме тепловой обработки они позволяют после пропаривания и последующего естественного твердения бетона получить прочность не ниже, чем у бетонов нормального твердения в 28-суточном возрасте. Нецелесообразно использование при пропаривании высокоалюминатных цементов, недобор прочности которых к 28 суткам составляет примерно 20% по сравнению с тем же бетоном нормального твердения.

Химическое взаимодействие между клинкерными минералами и заполнителем (песком) при пропаривании не происходит, но оно возможно при более высоких температурах в условиях автоклавной обработки при повышенном давлении водяного пара. В последнем случае тонкомолотый кварцевый песок (его вводят в количестве до 30% в автоклавные материалы) достаточно активно взаимодействует с алитом и белитом. В результате этого вместо двухкальциевых гидросиликатов, дающих малопрочный сросток, возникают преимущественно волокнистые низкоосновные фазы серии CSH(B), обеспечивающие формирование высокопрочной структуры. Кремнезём наполнителя при автоклавировании активно связывает выделяющуюся при гидратации алита известь с образованием дополнительных количеств низкоосновных гидросиликатов кальция, и в целом количество продуктов гидратации в этих условиях выше, чем при естественном твердении. В результате автоклавная обработка бетона не только повышает его прочность, но также снижает усадку изделий, а в отдельных случаях повышает коррозионную устойчивость бетонов.

6.5. Строительно-технические свойства и применение портландцемента.

Портландцемент является основным видом вяжущих материалов, что обусловлено его ценными строительно-техническими свойствами. Совокупность этих свойств для отдельных видов портландцемента определяет области применения этих вяжуших.

Плотность и объёмная масса. Величина плотности позволяет отличать бездобавочные портландцементы от пуццолановых и шлаковых цементов, так как из всех этих вяжущих бездобавочный цемент обладает самой высокой плотностью (3,05-3,2 г/см3). Для цементов с добавками плотность составляет 2,7-2,9 г/см . Плотность порошка портландцемента в рыхлом состоянии равна 900-1100 г/л, а в уплотнённом - 1400-1700 г/л. Величина плотности зависит в основном от тонкости помола портландцемента: она тем меньше, чем выше дисперсность порошка.

Тонкость помола оценивается двумя показателями: количеством цементного порошка (в % от навески), прошедшего через сито с определённым размером отверстий (метод ситового анализа), и средневзвешенной удельной поверхностью зёрен.

Согласно ГОСТ цемент должен иметь такую тонкость помола, чтобы через сито № 008 проходило не менее 85% от массы пробы или остаток на сите не превышал 15%. Большинство заводских цементов имеют остаток на сите № 008 8-12%. Удельная поверхность цементов заводского помола составляет 2500-3000 см2/г.

Увеличение удельной поверхности цемента выше 3000-3500 см2/г связано со значительным снижением производительности мельниц, хотя и приводит к некоторому повышению активности цемента в ранние сроки твердения. Тонкость помола цемента влияет на скорость его схватывания и твердения, а также определяет степень его использования в растворах и бетонах. Цемент, состоящий в основном из зёрен фракции 0-3 мкм, уже через сутки достигает высокой прочности, однако заметного повышения скорости роста в дальнейшем не наблюдается. Более крупные зёрна твердеют в начальные сроки медленнее, но к 28-ми суткам достигают такой же прочности, что и зёрна фракции 0-3 мкм, и продолжают эффективно твердеть до 90 суток. Цемент более грубого помола гидратируется медленнее, однако при этом достигается большая конечная прочность, нежели при более тонком помоле. Этот факт объясняется тем, что в ходе медленной гидратации образуется большее количество длинноволокнистых гидросиликатов кальция, которые хорошо срастаются друг с другом. Кроме того, в этом случае больше число контактов срастания. Слишком тонкий помол может привести даже к снижению прочности, так как он приводит к росту водопотребности цемента, усиленному тепловыделению и развитию усадочных деформаций.

Цементы, измельчённые до одинаковой удельной поверхности в различных помольных агрегатах, могут заметно отличаться по прочности и водопотребности. Это связано с тем, что в мельницах разных типов способ измельчения разный, что влечёт за собой различия в гранулометрическом составе. Более желателен полидисперсный состав портландцемента, когда в нём присутствуют как мелкие (до 40 мкм), так и крупные (более 80 мкм) частицы. Это обеспечивает более плотную упаковку частиц и, следовательно, более высокую прочность камня. Мелкие частицы интенсивно гидратируются в начальный период твердения, а крупные - способствуют нарастанию прочностных характеристик в более поздние сроки.

studfiles.net


Смотрите также