Большая Энциклопедия Нефти и Газа. Типы цемента пород


Цемент - порода - Большая Энциклопедия Нефти и Газа, статья, страница 1

Цемент - порода

Cтраница 1

Цемент пород глинистый и карбонатно-глинистый. Глинистый цемент представлен каолинитом, гидрослюдой и смесью двух этих минералов.  [1]

Органическое - вещество в виде цемента пород.  [2]

Данный метод исследования позволяет также дать характеристику цементам породы, чему способствует, в частности, подверженность глинистых цементов прокрашиванию родамином, который глинистые минералы, слагающие цемент, адсорбируют из бакелита.  [3]

При этом происходят быстрое заиливание фильтрующих элементов, разрушение естественного цемента пород, образование больших каверн в пласте, обрушение его кровли и смятие фильтра или эксплуатационной колонны. Данный вид конструкции приемлем лишь в определенных типах коллекторов, сложенных однородными крупнозернистыми разностями.  [5]

Кислота, попадая в пласт, растворяет карбонатный скелет или цемент породы и увеличивает ее проницаемость. Эффективность метода зависит от глубины проникновения соляной кислоты в пласт и от ее концентрации. Метод противопоказан для пород с повышенным содержанием глинистого материала ( глинистые частицы разбухают под действием кислоты), в этом случае в раствор соляной кислоты добавляют до 3 % плавиковой кислоты, которая растворяет глинистые частицы.  [6]

Время выдержки зависит от ее концентрации, скорости нейтрализации, состава цемента породы. Затем давление со стороны входа кислоты в образец постепенно снижается для вытеснения продуктов реакции воздухом.  [7]

Для цементированных обломочных пород величина обломочных зерен определяется после предварительного разрушения цемента породы или путем замера величины этих зерен в прозрачных шлифах. Для целей минералогического анализа обломочных частиц применяется упрощенный метод механического анализа с накоплением частиц 0 25 - 0 10 мм, 0 10 - 0 05 мм и 0 05 - 0 01 мм.  [8]

Кроме того, оказывают влияние степень вытянутости пор ( фактор 1), количество цемента породы и его тип ( фактор Г2), а также степень сгру-женности пор ( фактор Г8), могущая обусловить наличие в породе обильно пористых участков, особенно легко проницаемых.  [9]

В Тюменском государственном университете доцентом А. А. Болотовым с сотрудниками кафедры экспериментальной физики проводятся исследования влияния природы, структуры и цемента нефтесодержа-щих пород на давление насыщения пластовых нефтей. Результаты, полученные с помощью импульсного ультразвукового метода, подтверждают, что в присутствии пористой среды давление насыщения данного газонефтяного раствора возрастает.  [10]

Здесь Ь, у-структурные параметры породы, зависящие от коэффициентов Юнга и Пуассона, коэффициентов объемного сжатия кварца и цемента породы, объемного содержания кварца и цемента породы, коэффициента пористости на контуре пласта; р, рк - текущее и контурное давление соответственно; kK - коэффициент проницаемости внешней границы.  [11]

Изменение структуры пород возможно не только при их увлажнении, но и при длительной фильтрации за счет выщелачивания и растворения минерального цемента породы и кольматации пор микрочастицами при высоких скоростях фильтрации.  [12]

Здесь Ь, у-структурные параметры породы, зависящие от коэффициентов Юнга и Пуассона, коэффициентов объемного сжатия кварца и цемента породы, объемного содержания кварца и цемента породы, коэффициента пористости на контуре пласта; р, рк - текущее и контурное давление соответственно; kK - коэффициент проницаемости внешней границы.  [13]

Первой процедурой, проводимой при гранулометрическом анализе, яв ляется обычно обработка образца раствором 10 % - ной соляной кислоты, поз воляющая установить точное содержание карбонатов, зачастую образующи; цемент породы.  [14]

В разрезе объект представлен переслаиванием карбонатных порово-трещинных коллекторов с незначительным содержанием каверн и плотных со слабо - и среднезернистыми обломочными карбонатными частицами органического происхождения с размерами 0 1 - 1 2 мм; диаметры поровых каналов меняются от 0 08 до 0 4 мм. Цементом пород служит кальций, составляющий 5 - 7 % от общего объема.  [15]

Страницы:      1    2

www.ngpedia.ru

7. Минеральный состав цемента песчаных пород.

Цемент в них может быть известковым, кремнистым, фосфатным, глинистым, карбонатным, железистый.

8. Текстуры и структуры обломочных пород.

Структуры:

Грубообломочные (псефиты)>1мм.

Песчаные (псаммиты) 1-0,1 мм.

Алевритовые 0,1-0,01 мм.

Пеллитовые <0,01 мм.

Текстуры: массивные, разл. типы слоистости, знаки ряби, жизн. организмов, гиероглифы, сланцеватые – глины, только для песчаных – тонкая горизонтальная слоистость.

9. Практическое использование обломочных пород.

Глыбы очень декоративны, используются в различных композициях и при создании тематических пейзажей: горных, каньонных, террасных и т.д.

Конгломерат и брекчии –Их применяют при изготовлении кремнеземистого цемента, как строительный камень, облицовочный материа

Валунник, щебень – строительный камень

Песок Широко используется в составе строительных материалов, для намывки участков под строительство, для пескоструйной обработки, при возведении дорог, насыпей, в жилищном строительстве для обратной засыпки, при благоустройстве дворовых территорий, при производстве раствора для кладки, штукатурных и фундаментных работ, используется для бетонного производства. При производстве железобетонных изделий, бетона высоких марок прочности, а также при производстве тротуарной плитки, бордюров, колодезных колец используют крупнозернистый песок. Мелкий строительный песок используется для приготовления накрывочных растворов. Кроме того песок является основным компонентом при изготовлении стекла.

Алевролит идеально подходит для облицовки зданий, коттеджей и загородных домов, входных групп, набережных, тротуаров и других архитектурных объектов. А также для выкладывания садовых и ландшафтных дорожек, создания подпорных стенок, садовых элементов, формирования фонтанов.

15. Обломочные породы смешанного состава.

Классификация по 2-м признакам: по содержанию песка, алеврита, и глины и по числу пластичности.

Породы содержащие более 30% глинистых частиц относят к глинам.

Если 10-30%, то суглинки.

Если от 5 до 10%, то супеси.

И менее 5% к алевритам или пескам.

Глины характеризуются числом пластичности более 22%, суглинки 10-20%, супеси от 0 до 10%.

Основные породобр. мин.: в смеш. составе глин. мин. кварц, пол. шп., слюдами. Акцессорные – глауконит, циркон, турмалин, гранат. Рудные – магнетит, гематит, пирит.

Структуры как у обломочных и глинистых: алевро-псамитовая, алевро-псефитовая.

Текстуры – слоистые, массивные (землистые и пятнистые).

Мусорные породы – нет определенного элемента или хледолиты.

10. Глинистые породы. Классификация

Породы на 50% и более сложены глинистыми минералами. В основе классификации: генезис, мин. состав и свойства.

Выделяют 2 подгруппы:

1) Глины, связанные породы размокающие в воде, обладающие пластичностью и значительной пористостью до 60%

2) Аргиллиты – сцементированные породы и глинистые сланцы – плотные, слабопористые, метаморфизованные. Породы некпластичные, не размокают в воде за исключением, тех в которых есть монтморилонит.

По генезису выделяют хемогенные и обломочные.

Основная структура – пеллитовая,

Структуры: беспорядочнозернистые, параллельно ориентированные, волокнистые, хлопьевидные, оойдные.

Текстуры – массивные, слоистые, сланцеватые.

Выделяют:

Крупнодисперсные 0,01-0,001 мм.

Тонкодисперсные <0,001 мм.

Минералы породообразующие – Минер. группы каолинита, монтморилонит, гидрослюда, глауконит, полыгорскит, хлорит, сепиолит (аридный климат).

Второстипенные:

аллотигенные: кварц, пол. шпат, холцедон, опал, оксиды и гидро.,

Рудные: пирит, сидерит, магнетит

Аутигенные; кальцит, доломит, гипс, коолинит.

В химическом отношение: более 50% кремнезема, 20-50% глинозема, немного K2O, Na2O.

studfiles.net

Классификация цементов

  1. По назначению цементы подразделяют на:

- общестроительные;

- специальные.

  1. По виду клинкера цементы подразделяют:

- на основе портландцементного клинкера;

- на основе глиноземистого (высокоглиноземистого) клинкера;

- на основе сульфоалюминатного или сульфоферритного клинкера.

  1. По вещественному составу цементы подразделяют на типы, в зависимости от вида и содержания минеральных добавок. Вид и содержание минеральных добавок регламентируют в нормативных документах на цемент конкретного вида и обозначают в маркировке: бездобавочный портландцемент ПЦ500 Д0; портландцемент с активными минеральными добавками ПЦ500 Д20; шлакопортландцемент ШПЦ-400; Пуццолановый портландцемент ППЦ-400; расширяющийся портландцемент РПЦ-500 и т.д.

  2. По прочности на сжатие цементы подразделяют на классы: 22,5; 32,5; 42,5; 52,5; на цементы конкретных видов могут быть:

- установлены дополнительные классы прочности;

- с учетом их назначения классы прочности не устанавливают.

  1. По скорости твердения общестроительные цементы подразделяют на:

- нормальнотвердеющие — с нормированием прочности в возрасте 28 сут;

- быстротвердеющие — с нормированием прочности в возрасте 2 (3)сут, повышенной по сравнению с нормальнотвердеющими, и 28 сут.

  1. По срокам схватывания цементы подразделяют на:

- медленносхватывающиеся с нормируемым сроком начала схватывания более 2 ч;

- нормальносхватывающиеся — с нормируемым сроком начала схватывания от 45 мин до 2 ч;

- быстросхватывающиеся с нормируемым сроком начала схватывания менее 45 мин.

  1. Нормирование специальных свойств

– Цементы, к которым не предъявляют специальных требований

–Цементы, к которым предъявляют специальные требования:

        • По сульфатостойкости

        • По объемным деформациям при твердении - безусадочные с величиной расширения в 3-х суточном возрасте не более 0.1%, расширяющиеся – деформация в 3-х суточном возрасте более 0.1%, самонапрягающиеся (нормируется энергия самонапряжения)

        • По тепловыделению - низкотермичные с тепловыделением за 3-е суток не более 230 Дж/г, за 7 суток – не более 270 Дж/г, умеренноэкзотермичные с тепловыделением за 7 суток не более 315 Дж/г

        • По декоративным свойствам – белый9 степень белизны не менее 68%) и цветной ПЦ (в соответствии с эталоном)

Обязательные показатели качества для цементов приведены в таблице .

Таблица

Наименование показателя, единица измерения

Вид цемента

Прочность на сжатие, изгиб, МПа

Все цементы

Вещественный состав, %

Все цементы

Равномерность изменения объема

Все цементы на основе портландце­ментного клинкера (ПЦК)

Самонапряжение, МПа

Цементы напрягающие

Линейное расширение, %

Цементы расширяющиеся, напрягающие, безусадочные

Тепловыделение, кал/г

Цементы для гидротехнических сооружений

Водоотделение, % или мл

Цементы для строительных растворов, дорожные, тампонажные

Содержание оксида магния MgО в клинкере, %

Все цементы на основе ПЦК

Содержание оксида серы (VI) SO3, %

Все цементы на основе ПЦК

Содержание хлор-иона Сl-, %

Все цементы на основе ПЦК

Минералогический состав, %

Цементы на основе ПЦК: сульфатостойкие, тампонажные, цементы для труб, шпал, опор, мостовых конструкций

Удельная эффект. активность естественных радионуклидов, Бк/кг

Все цементы

studfiles.net

Разновидности портландцементов — ТехЛиб

Наряду с обычным портландцементом выпускают большое количество его разновидностей: быстротвердеющий, пластифи­цированный, гидрофобный, сульфатостойкий, белый и цветной. Эти цементы более дорогие и рекомендуются только в тех слу­чаях, когда их специальные свойства могут быть использованы с максимальной эффективностью.

Быстротвердеющий портландцемент (БТЦ) характеризу­ется более быстрым нарастанием прочности в первые 3 сут. твердения. Более быстрое твердение цемента достигается за счет содержания в клинкере активных минералов (С3S + С3А = 60…65 %), а также за счет повышения тонкости помола клинкера до удельной поверхности 3500…4000 см/г. При помоле БТЦ допускается введение активных минеральных добавок (не более 15 %) или доменных гранулированных шлаков (до 20 % по массе цемента).

Быстротвердеющие портландцементы марок 400 и 500 целе­сообразно применять при изготовлении сборных высокопрочных обычных и предварительно напряженных железобетонных изде­лий и конструкций. Применение быстротвердеющего портланд­цемента при возведении сооружений из монолитного бетона по­зволяет значительно сократить сроки выдержки конструкций в опалубке. При хранении в течение 1…2 месяца БТЦ утрачивает свойство быстро твердеть и набирает прочность, как обычный портландцемент. Следовательно, хранить БТЦ длительное время нецелесообразно.

В ряде случаев применять БТЦ нельзя. Из-за высокого со­держания в клинкере С3S и С3А при гидратации образуется большое количество Са(ОН)2 и гидроалюминатов кальция, что делает цементный камень не стойким к химической коррозии. Поэтому БТЦ применяют лишь для конструкций, работающих в неагрессивной среде.

Из бетона, изготовленного на БТЦ, не выполняют массивные конструкции. Чрезмерное тепловыделение вызывает сильный разогрев ядра таких конструкций, в то время как внешние по­верхности охлаждаются. Из-за большого перепада температур в теле бетона могут возникнуть термические напряжения, что приводит к растрескиванию конструкции.

Для ускорения твердения бетона применяют также цементы с добавками — крентами. Они содержат безводный трехкальцие-вый сульфоалюминат, сульфоферрит, смесь сернокислого алю­миния и сернокислого железа. При помоле клинкера обычно­го портландцемента вводят 2…5 % добавок. Они не только ус­коряют твердение, но и повышают прочность цемента на 5… …10 МПа, т. е. на целую ступень. Применение таких цементов на заводах и стройках позволит отказаться от пропаривания из­делий и тем самым сократить затраты топлива и электроэнергии.

Пластифицированный портландцемент (ППЦ) получают помолом портландцементного клинкера вместе с гипсом и пла­стифицирующими добавками в виде концентрата сульфитно-спиртовой барды (ССБ) или кальциевой соли лигносульфоновой кислоты (ЛСТ) и других добавок в количестве 0,15…0,25 % от массы цемента. Марки этого цемента 400 и 500. Пластифициро­ванный цемент придает растворным и бетонным смесям повы­шенную подвижность по сравнению с обычным портландцемен­том при одинаковом расходе воды. Эффект пластификации ис­пользуют для уменьшения воды в бетоне и растворе, повышения их плотности, морозостойкости и водонепроницаемости. ППЦ рекомендуется для изготовления бетонов, используемых в до­рожном, аэродромном и гидротехническом строительстве.

Гидрофобный портландцемент (ГПЦ) получают путем введения при измельчении клинкера 0,1…0,3 % мылонафта, асидола, синтетических жирных кислот и других гидрофобизирующих добавок.

Цементные зерна, покрытые с поверхности тонким слоем гидрофобного вещества, не поглощают влагу из атмосферы, и, следовательно, при хранении на воздухе не происходит гидрата­ция зерен цемента. При длительном хранении портландцемента с гидрофобизирующей добавкой активность его снижается не­значительно.

ГПЦ должен удовлетворять тем же требованиям, что и обыч­ный портландцемент. Дополнительное требование — невпитыва­ние капли воды, нанесенной на поверхность пробы цемента, в течение 5 мин. При перемешивании с водой гидрофобные обо­лочки на зернах цемента разрушаются. Однако портландце­мент этого вида несколько замедленно схватывается и набирает прочность по сравнению с обычным портландцементом. Его применяют в гидротехническом, дорожном и аэродромном строительстве.

Сульфатостойкий портландцемент (СПЦ) изготовляют тонким помолом из клинкера следующего минералогического состава: С3S — не более 50 %; С3А — не более 5; С3А + С4АF— не более 22; МgО — 5 %. Введение в цемент инертных и активных минеральных добавок не допускается. При таком минералогиче­ском составе уменьшается возможность образования в цемент­ном камне (бетоне) под действием сульфатных вод гидросуль-фоалюмината кальция — «цементной бациллы». Его выпускают марки 400. СПЦ применяют при изготовлении конструкций, подверженных действию сульфатных вод, а также морозостой­кого бетона.

Белый портландцемент — вяжущее вещество, твердеющее на воздухе и в воде, получаемое измельчением белого маложеле­зистого клинкера, белых минеральных добавок и гипса. Выпус­кают марок 400 и 500. По степени белизны белый портландце­мент подразделяют на три сорта с коэффициентом отражения соответственно не менее 80, 75 и 68 %. Начало схватывания це­мента должно наступать не ранее чем через 45 мин, конец — не позднее чем через 12ч после затворения водой. Тонкость помо­ла: через сито с сеткой N 008 должно проходить не менее 88 % массы просеиваемой пробы цемента.

Применяют белый портландцемент для архитектурно-отделочных работ, а также в качестве вяжущего при приготов­лении окрасочных составов. На его основе при тщательном смешивании или совместном помоле со щелочестоикими пиг­ментами получают цветные портландцементы.

Цветной портландцемент — вяжущее вещество, твердеющее на воздухе и в воде, получаемое путем совместного помола бе­лого или цветного клинкера (не менее 80 %), минеральных (не более 15 %) и органических красителей, гипса и активной мине­ральной добавки (не более 6 %). Органические пигменты вводят в количестве не более 0,5 % от массы цемента. Красящие добав­ки должны быть свето- и щелочестоикими. Введение пигментов и красителей снижает активность портландцемента.

Цветной портландцемент выпускают марок 300, 400 и 500 желтого, розового, красного, коричневого, зеленого, голубого и черного цветов. Красный, желтый, коричневый цементы полу­чают с использованием оксидов железа (охры, железного сурика, гематита), черный — диоксида марганца, углеродистых пигмен­тов, зеленый — оксида хрома, фталоцианового пигмента, голу­бой — ультрамарина.

Цветной портландцемент применяют для архитектурно-отде­лочных работ, а также в качестве вяжущего при приготовлении окрасочных составов, для индустриальной отделки стеновых панелей, подоконников, лестничных ступеней, в дорожных работах.

Портландцементы с активными минеральными добавками

Портландцемент с минеральными добавками (ПЦД20) из­готовляют тонким измельчением клинкера и минеральных доба­вок. В качестве добавок вводят доменные гранулированные шлаки или активные минеральные добавки осадочного проис­хождения, но не более 20 % массы цемента. Портландцемент с минеральными добавками в отличие от портландцемента без Добавок (ГЩДО) обладает повышенной водостойкостью, мень­шими тепловыделением и морозостойкостью. Выпускают его тех же марок, что и портландцемент.

Пуццолановый портландцемент получают путем совмест­ного помола или раздельного помола и последующего смешива­ния клинкера портландцемента (75…60 %), активной минераль­ной добавки (20…40 %) и небольшого количества природного гипса. В качестве активных минеральных добавок применяют вулканические пеплы (пуццоланы) и туфы, пемзу, диатомит, опоку, трепел, золу ТЭС и др. Такие добавки содержат кремне­зем в аморфном состоянии. Активными минеральными добавка­ми называют вещества, которые при смешивании с известью придают ей водостойкость или гидравлические свойства.

Активные добавки связывают образующийся при твердении цемента гидроксид кальция Са(ОН)2 в нерастворимые в воде гидросиликаты кальция, благодаря чему повышаются коррози­онная стойкость и водостойкость цементного камня, бетона и раствора. Пуццолановый портландцемент выпускают марок 300 и 400.

Он рекомендуется для сооружения массивных бетонных кон­струкций, которые постоянно находятся во влажных условиях (под водой, в земле), а также для надземных сооружений, нахо­дящихся в условиях повышенной влажности. Его не следует применять при зимнем бетонировании (медленно твердеет) и для конструкций, подвергающихся попеременному заморажива­нию и оттаиванию (из-за низкой морозостойкости).

Шлакопортландцемент (ШПЦ) получают тонким измель­чением портландцементного клинкера (20…79 %), природного гипса (до 5 %) и доменного гранулированного (быстроохлаждснного, содержащего кремнезем в аморфном виде) шлака (20…80 %). Доменные шлаки — массовые побочные продукты при выплавке чугуна. Шлак переводят из огненно-жидкого в твердое состояние путем быстрого охлаждения в воде или с по­мощью водяного пара. Эта операция называется грануляцией, так как шлаковый расплав распадается на отдельные гранулы. Самостоятельно шлаки не твердеют, но в присутствии гипса и портландцемента они проявляют вяжущие свойства.

Шлакопортландцемент выпускают марок 300, 400 и 500. Он сероватого цвета с голубоватым оттенком, отличается от других видов цемента тем, что содержит большое количество металли­ческих частиц, выявляемых магнитом.

Шлакопортландцемент применяют для бетонных и железобе­тонных надземных, подземных и подводных конструкций, сборных конструкций с использованием тепловлажностной об­работки, приготовления кладочных и штукатурных растворов. Его не рекомендуется применять для конструкций, к которым предъявляются высокие требования по морозостойкости, а также подвергающихся систематическому увлажнению -и высушива­нию, для зимнего бетонирования.

Цемент для строительных растворов изготовляют путем совместного помола портландцементного клинкера, активных минеральных добавок и добавок-наполнителей. Содержание клинкера в цементе должно быть не менее 20 % (считая от мас­сы всего вяжущего). Для регулирования сроков схватывания при помоле компонентов вводят 3…5 % природного гипса.

Добавки-наполнители не обладают гидравлическими свойст­вами, или эти свойства выражены у них в очень слабой степени (кварцевый песок, мрамор, кристаллический известняк). Такие добавки необходимы для снижения активности вяжущего (про­порционально количеству введенной добавки), поскольку в строительных растворах применять высокомарочные цементы экономически не выгодно.

Для улучшения качества цемента допускается вводить при его помоле пластифицирующие (не более 0,5 %) или гидрофоби-зирующие (до 0,3 %) добавки. Такой цемент характеризуется следующими сроками схваты­вания: начало — не ранее 45 мин, конец — не позднее 12 ч от мо­мента затворения. Цемент должен хорошо удерживать воду: водоотделение теста, изготовленного из равных количеств цемента и воды, должно быть не более 30 % по объему. Выпускают це­мент марки 200.

В связи с замедленным твердением этот цемент используют, как правило, при температуре окружающей среды не ниже плюс 10 °С для изготовления кладочных и штукатурных растворов, а также низкомарочных неармированных бетонов, к которым не предъявляются требования по морозостойкости.

Глиноземистый цемент и его разновидности

Глиноземистый цемент — быстротвердеющее гидравлическое вяжущее, состоящее преимущественно из моноалюмината каль­ция (СаО — Аl2О3). Свое название этот цемент получил от техни­ческого названия оксида алюминия Аl2О3 — глинозем. Однако для его получения требуется иной клинкер (не портландцемент-ный). Этот цемент является быстротвердеющим вяжущим веще­ством, набирающим через сутки твердения прочность, которая составляет свыше 85 % марочной.

Получение. Сырьем для глиноземистого цемента служат бокситы и известняки. Бокситы — горная порода, состоящая из гидратов глинозема (А12О3•nН2О) и примесей (в основном Fе2О3, SiO2, СаО и др.). Бокситы широко используются в раз­личных отраслях промышленности: для получения алюминия, абразивов, огнеупоров, адсорбентов и т. п., а месторождений с высоким содержанием А12О3 очень немного.

Производство глиноземистого цемента более энергоемко, чем производство портландцемента. Клинкер глиноземистого цемента получают либо обжигом до плавления брикетов в элек­трических или доменных печах при температуре 1400…1500 °С, либо обжигом шихты до спекания во вращающихся печах при температуре 1200…1300 °С. Затем следует тонкий размол продукта, который сильно затруднен из-за его высокой твер­дости.

Состав. Химический состав глиноземистого цемента, получаемого разными методами, следующий: СаО — 35…45 %; Аl2О3 — 30…50; Fе2О3 — О..15; SiO2 — 5…15 %. В минеральном составе клинкера глиноземистых цементов преобладает одно-кальциевый алюминат СаО•Аl2О3(СА), определяющий основ­ные свойства этого вяжущего. Кроме того, в нем присутствуют: СА2, С12А7; двухкальциевый силикат С2S, отличающийся, как известно, медленным твердением; в качестве неизбежной балла­стной примеси — геленит 2СаО • Аl2О3 • 2SiO2.

Твердение. Процесс твердения глиноземистого цемента и прочность образующегося цементного камня существенно за­висят от температуры твердения. При нормальной температуре(до +25 °С) основной минерал цемента СА взаимодействует с водой с образованием кристаллического гидроалюмината каль­ция и гидроксида алюминия в виде гелевидной массы

2(СаО • Аl2О3) + 11h3О= 2СаО • Аl2О3 • 8Н2О + 2Аl(ОН)3+Q

Суммарное тепловыделение у глиноземистого цемента не­много ниже, чем у портландцемента (около 300…400 кДж/кг), но протекает оно в очень короткие сроки (в первые сутки выде­ляется 70… 80 % от общего количества теплоты). Поэтому воз­можен перегрев бетонов на глиноземистом цементе в случае больших объемов бетонирования.

Если же температура твердеющего глиноземистого цемента превысит 25…30 °С, то процесс твердения изменяется, и вместо С2АН8 образуется С3АН6; при этом прочность цементного камня будет ниже в 2…2,5 раза. Поэтому глиноземистый цемент не рекомендуется использовать для бетонирования массивных кон­струкций, где возможен саморазогрев бетона, а также в условиях жаркого климата. Изделия на глиноземистом цементе нельзя подвергать тепловой обработке. При работах в зимних условиях, напротив, саморазогрев и быстрое твердение делают глиноземи­стый цемент очень перспективным.

Свойства. Сроки схватывания глиноземистого цемента поч­ти такие же, как у портландцемента: начало — не ранее 30 мин, конец — не позднее 12ч (реально 4…5 ч). После окончания схва­тывания прочность нарастает очень быстро (лавинообразно).

Глиноземистый цемент выпускают марок 400, 500 и 600, оп­ределенных в трехсуточном возрасте, но уже через одни сутки образцы набирают прочность при сжатии соответственно не ме­нее 23, 28 и 33 МПа.

Усадка глиноземистого цемента при твердении на воздухе ниже, чем у портландцемента в 3…5 раз; пористость цементного камня ниже примерно в 1,5 раза. Это связано с тем, что при оди­наковой с портландцементом водопотребности глиноземистый цемент при твердении химически связывает 30… 45 % воды от массы цемента (портландцемент — около 20 %).

Среда в процессе твердения и в затвердевшем цементном камне у глиноземистого цемента слабощелочная. Свободного Са(ОН)2 цементный камень не содержит. Это обстоятельство в сочетании с пониженной пористостью делает бетоны на глино­земистом цементе более устойчивыми к коррозии в пресной и минерализованной воде.

Применение. Глиноземистый цемент целесообразно исполь­зовать при аварийных и срочных работах, при зимнем бетониро­вании и в тех случаях, когда от бетона требуется высокая водо­стойкость и водонепроницаемость.

Специальная область применения глиноземистых цементов -жаростойкие бетоны. Объясняется это тем, что, во-первых, в продуктах твердения этого цемента отсутствует Са(ОН)2 (при нагреве переходит в СаО, который при контакте с водой гасится с увеличением объема) и, во-вторых, при высокой температуре (700…800 °С) между продуктами твердения цемента и заполни­телями бетона начинаются реакции в твердой фазе, по мере про­текания которых прочность бетона не падает, а повышается, так как бетон превращается в керамический материал.

Кроме того, глиноземистый цемент является компонентом многих расширяющихся цементов, которые даже при твердении на воздухе имеют небольшое увеличение в объеме. Безусадоч­ные цементы — это расширяющиеся цементы, у которых расши­рение только компенсирует усадку. Поэтому такие цементы как бы сами уплотняют себя, делая бетон водонепроницаемым. Если расширяющиеся цементы используются в железобетонных кон­струкциях, то эффект расширения вяжущего может вызывать натяжение арматуры и сжатие самого бетона, что дополнительно защитит его от образования трещин. Такие це­менты называют напрягающими.

Эффект расширения вяжущего может быть достигнут раз­личными методами, например путем гашения свободного СаО, добавляемого в твердеющее вяжущее, либо с помощью образо­вания эттрингита — гидросульфоалюмината кальция ЗСаО•А12О3•ЗСаSО4•(31…32)Н2О. Последнее возможно при взаимо­действии алюминатов и сульфатов кальция в водной среде.

В твердеющем материале протекают два процесса — расши­рение, обусловленное процессом кристаллизации эттрингита (или гашения СаО) с увеличением объема новообразований и ростом внутренних растягивающих напряжений, и препятст­вующий расширению процесс — рост прочности самого цементного камня. Если рост расширяющихся новообразований будет протекать при недостаточной прочности цементного камня, то податливая гелеобразная масса будет сжиматься и заметного расширения не произойдет. И наоборот, если рост расширяю­щихся новообразований будет продолжаться, когда цементный камень набрал достаточно высокую прочность, то напряжения, обусловленные ростом кристаллов в ограниченном объеме, мо­гут вызвать падение прочности и даже разрушение цементного камня.

В свою очередь деформации расширения могут быть свобод­ными и связанными, т. е. когда расширение цементного камня ограничено арматурой или кондуктором (формой). Деформации бетона при свободном расширении выше, чем при связанном, что обусловлено низкой прочностью цементного камня в раннем возрасте и его неспособностью напрягать кондуктор, а в более позднем возрасте — появлением микро- и макротрещин, которые увеличивают свободное расширение, но не вызывают дополни­тельного самонапряжения.

Связанные деформации вызывают самонапряжение, проти­водействуют развитию усадочных деформаций и способствуют самоуплотнению цементного камня, усилению контакта камня с заполнителем и кристаллизационных контактов. При изготовле­нии преднапряженных железобетонных конструкций в этом слу­чае меньше потери преднапряжения и выше трещиностойкость получаемых изделий.

Главной задачей при разработке составов расширяющихся и безусадочных вяжущих является правильный выбор не толь­ко вида и количества расширяющихся компонентов, но и момен­та их образования относительно процесса формирования струк­туры цементного камня. Для различных видов расширяющих­ся цементов период наиболее интенсивного и безопасного рас­ширения цементного камня составляет от 12 ч до 3…7 сут. в зависимости от свойств основного структурообразующего вяжущего.

Для обеспечения образования эттрингита в смесях с безуса­дочными и расширяющимися цементами должна присутствовать вода в продолжение всего периода твердения. Кроме того, эти Цементы нельзя применять при работе конструкций при температурах выше 80 °С, так как постепенно разрушается важный кристаллический компонент цементного камня — эттрингит: он отдает кристаллизационную воду, что сопровождается падением прочности.

Расширяющийся водонепроницаемый цемент получают со­вместным помолом глиноземистого цемента (70 %), гипса (20 %) и высокоосновного гидроалюмината кальция С4АН13 (10 %). Он является быстросхватывающимся и быстротвердеющим гидрав­лическим вяжущим веществом (Лсж через 6 ч — не менее 7,5 МПа, через 3 сух. — не ниже 30 МПа).

Линейное расширение твердеющего цемента на воздухе со­ставляет в возрасте 1 сут. не менее 0,05 %, в возрасте 28 сут. — не менее 0,02 %. Цемент используют при восстановлении желе­зобетонных конструкций, для гидроизоляции подземных сооружений, зачеканки трещин и стыков.

Гипсоглиноземистый расширяющийся цемент получают со­вместным помолом высокоглиноземистых шлаков (70 %) и двуводного гипса (30 %). Гипсоглиноземистый расширяющийся цемент имеет начало схватывания не ранее 20 мин и конец схва­тывания не позднее 4 ч от начала затворения. При необходимо­сти могут использоваться замедлители сроков схватывания -ЛСТ, бура, уксусная кислота и др. Линейное расширение твер­деющего цемента в состоянии теста нормальной густоты при твердении на воздухе составляет в возрасте 28 сут. не менее 0,1 %. Предел прочности при сжатии через 1 сут. твердения со­ставляет 35 МПа для марки 400 и 45 МПа — для марки 500. Мар­ки цемента соответствуют трехдневному возрасту. Гипсоглино­земистый расширяющийся цемент применяют для получения безусадочных и расширяющихся водонепроницаемых бетонов, гидроизоляционных штукатурных растворов, при бурении сква­жин и т. п. Он обладает морозо- и атмосферостойкостью в рас­творах и бетонах, изготовляемых на его основе.

Напрягающийся цемент (НЦ) получают совместным помо­лом клинкера портландцемента (65…75 %), двуводного гипса (6… 10 %) и высокоглиноземистого компонента (13…20 %). Сроки схватывания: начало — не ранее 30 мин, конец — не по­зднее 4 ч. Прочность через 1 сут. — не менее 15 МПа, через 28 сут. — не менее 50 МПа.

Напрягающий цемент обладает способностью к значитель­ному расширению (до 4 %) при твердении в состоянии цемент­ного теста нормальной густоты. В железобетоне НЦ создает по­сле отвердевания в арматуре предварительное напряжение. Этим свойством как функцией химической энергии цемента пользу­ются при изготовлении предварительно напряженных железобе­тонных конструкций. С учетом величины достигаемой энергии самонапряжения, т. е. удельного давления в МПа, развиваемого при твердении НЦ в условиях ограничения свободного расши­рения, выделяют его разновидности НЦ-2, НЦ-4 и НЦ-6. Напря­гающий цемент отличается также повышенными показателями водо- и газонепроницаемости, морозостойкости, прочности при растяжении и изгибе. Марки цемента (400 и 500) определяются испытанием образцов — балочек из цементно-песчаного раствора состава 1 : 1 в возрасте 28 сут.

Напрягающий цемент применяют для изготовления конст­рукций из самонапряженного железобетона, а также для гидро­изоляции шахт, подвалов, зачеканки швов и т. д.

Перспективная область применения бетонов и растворов на расширяющихся и безусадочных вяжущих — бесшовные тонкос­лойные стяжки или лицевые покрытия полов большой площади. С помощью полимерных модификаторов таким смесям придают свойство самовыравнивания, а эффект безусадочности гаранти­рует трещиностойкость покрытия. Быстрое твердение и защит­ные полимерные добавки обеспечивают необходимое количест­во воды для протекания полной гидратации без какого-либо специального ухода.

Читать по теме:

К разделу

Строительные материалы

tehlib.com


Смотрите также