Большая Энциклопедия Нефти и Газа. Затворение цемента это


Затворение цемента и бетона - это... Что такое Затворение цемента и бетона?

Затворение цемента и бетона — процесс смешивания компонентов смесей с водой.

[Ушеров-Маршак А. В. Бетоноведение: лексикон. М.: РИФ Стройматериалы.- 2009. – 112 с.]

Рубрика термина: Общие термины, бетон

Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника, Автотранспорт, Акустические материалы, Акустические свойства, Арки, Арматура, Арматурное оборудование, Архитектура, Асбест, Аспирация, Асфальт, Балки, Без рубрики, Бетон, Бетонные и железобетонные, Блоки, Блоки оконные и дверные, Бревно, Брус, Ванты, Вентиляция, Весовое оборудование, Виброзащита, Вибротехника, Виды арматуры, Виды бетона, Виды вибрации, Виды испарений, Виды испытаний, Виды камней, Виды кирпича, Виды кладки, Виды контроля, Виды коррозии, Виды нагрузок на материалы, Виды полов, Виды стекла, Виды цемента, Водонапорное оборудование, Водоснабжение, вода, Вяжущие вещества, Герметики, Гидроизоляционное оборудование, Гидроизоляционные материалы, Гипс, Горное оборудование, Горные породы, Горючесть материалов, Гравий, Грузоподъемные механизмы, Грунтовки, ДВП, Деревообрабатывающее оборудование, Деревообработка, ДЕФЕКТЫ, Дефекты керамики, Дефекты краски, Дефекты стекла, Дефекты структуры бетона, Дефекты, деревообработка, Деформации материалов, Добавки, Добавки в бетон, Добавки к цементу, Дозаторы, Древесина, ДСП, ЖД транспорт, Заводы, Заводы, производства, цеха, Замазки, Заполнители для бетона, Защита бетона, Защита древесины, Защита от коррозии, Звукопоглащающий материал, Золы, Известь, Изделия деревянные, Изделия из стекла, Инструменты, Инструменты геодезия, Испытания бетона, Испытательное оборудование, Качество цемента, Качество, контроль, Керамика, Керамика и огнеупоры, Клеи, Клинкер, Колодцы, Колонны, Компрессорное оборудование, Конвеера, Конструкции ЖБИ, Конструкции металлические, Конструкции прочие, Коррозия материалов, Крановое оборудование, Краски, Лаки, Легкие бетоны, Легкие наполнители для бетона, Лестницы, Лотки, Мастики, Мельницы, Минералы, Монтажное оборудование, Мосты, Напыления, Обжиговое оборудование, Обои, Оборудование, Оборудование для производства бетона, Оборудование для производства вяжущие, Оборудование для производства керамики, Оборудование для производства стекла, Оборудование для производства цемента, Общие, Общие термины, Общие термины, бетон, Общие термины, деревообработка, Общие термины, оборудование, Общие, заводы, Общие, заполнители, Общие, качество, Общие, коррозия, Общие, краски, Общие, стекло, Огнезащита материалов, Огнеупоры, Опалубка, Освещение, Отделочные материалы, Отклонения при испытаниях, Отходы, Отходы производства, Панели, Паркет, Перемычки, Песок, Пигменты, Пиломатериал, Питатели, Пластификаторы для бетона, Пластифицирующие добавки, Плиты, Покрытия, Полимерное оборудование, Полимеры, Половое покрытие, Полы, Прессовое оборудование, Приборы, Приспособления, Прогоны, Проектирование, Производства, Противоморозные добавки, Противопожарное оборудование, Прочие, Прочие, бетон, Прочие, замазки, Прочие, краски, Прочие, оборудование, Разновидности древесины, Разрушения материалов, Раствор, Ригеля, Сваи, Сваизабивное оборудование, Сварка, Сварочное оборудование, Свойства, Свойства бетона, Свойства вяжущих веществ, Свойства горной породы, Свойства камней, Свойства материалов, Свойства цемента, Сейсмика, Склады, Скобяные изделия, Смеси сухие, Смолы, Стекло, Строительная химия, Строительные материалы, Суперпластификаторы, Сушильное оборудование, Сушка, Сушка, деревообработка, Сырье, Теория и расчет конструкций, Тепловое оборудование, Тепловые свойства материалов, Теплоизоляционные материалы, Теплоизоляционные свойства материалов, Термовлажносная обработка бетона, Техника безопасности, Технологии, Технологии бетонирования, Технологии керамики, Трубы, Фанера, Фермы, Фибра, Фундаменты, Фурнитура, Цемент, Цеха, Шлаки, Шлифовальное оборудование, Шпаклевки, Шпон, Штукатурное оборудование, Шум, Щебень, Экономика, Эмали, Эмульсии, Энергетическое оборудование

Источник: Энциклопедия терминов, определений и пояснений строительных материалов

Энциклопедия терминов, определений и пояснений строительных материалов. - Калининград. Под редакцией Ложкина В.П.. 2015-2016.

construction_materials.academic.ru

Затворение цемента - это... Что такое Затворение цемента?

Затворение цемента – смешивание цемента с водой.

[ГОСТ 30515-2013]

Рубрика термина: Свойства цемента

Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника, Автотранспорт, Акустические материалы, Акустические свойства, Арки, Арматура, Арматурное оборудование, Архитектура, Асбест, Аспирация, Асфальт, Балки, Без рубрики, Бетон, Бетонные и железобетонные, Блоки, Блоки оконные и дверные, Бревно, Брус, Ванты, Вентиляция, Весовое оборудование, Виброзащита, Вибротехника, Виды арматуры, Виды бетона, Виды вибрации, Виды испарений, Виды испытаний, Виды камней, Виды кирпича, Виды кладки, Виды контроля, Виды коррозии, Виды нагрузок на материалы, Виды полов, Виды стекла, Виды цемента, Водонапорное оборудование, Водоснабжение, вода, Вяжущие вещества, Герметики, Гидроизоляционное оборудование, Гидроизоляционные материалы, Гипс, Горное оборудование, Горные породы, Горючесть материалов, Гравий, Грузоподъемные механизмы, Грунтовки, ДВП, Деревообрабатывающее оборудование, Деревообработка, ДЕФЕКТЫ, Дефекты керамики, Дефекты краски, Дефекты стекла, Дефекты структуры бетона, Дефекты, деревообработка, Деформации материалов, Добавки, Добавки в бетон, Добавки к цементу, Дозаторы, Древесина, ДСП, ЖД транспорт, Заводы, Заводы, производства, цеха, Замазки, Заполнители для бетона, Защита бетона, Защита древесины, Защита от коррозии, Звукопоглащающий материал, Золы, Известь, Изделия деревянные, Изделия из стекла, Инструменты, Инструменты геодезия, Испытания бетона, Испытательное оборудование, Качество цемента, Качество, контроль, Керамика, Керамика и огнеупоры, Клеи, Клинкер, Колодцы, Колонны, Компрессорное оборудование, Конвеера, Конструкции ЖБИ, Конструкции металлические, Конструкции прочие, Коррозия материалов, Крановое оборудование, Краски, Лаки, Легкие бетоны, Легкие наполнители для бетона, Лестницы, Лотки, Мастики, Мельницы, Минералы, Монтажное оборудование, Мосты, Напыления, Обжиговое оборудование, Обои, Оборудование, Оборудование для производства бетона, Оборудование для производства вяжущие, Оборудование для производства керамики, Оборудование для производства стекла, Оборудование для производства цемента, Общие, Общие термины, Общие термины, бетон, Общие термины, деревообработка, Общие термины, оборудование, Общие, заводы, Общие, заполнители, Общие, качество, Общие, коррозия, Общие, краски, Общие, стекло, Огнезащита материалов, Огнеупоры, Опалубка, Освещение, Отделочные материалы, Отклонения при испытаниях, Отходы, Отходы производства, Панели, Паркет, Перемычки, Песок, Пигменты, Пиломатериал, Питатели, Пластификаторы для бетона, Пластифицирующие добавки, Плиты, Покрытия, Полимерное оборудование, Полимеры, Половое покрытие, Полы, Прессовое оборудование, Приборы, Приспособления, Прогоны, Проектирование, Производства, Противоморозные добавки, Противопожарное оборудование, Прочие, Прочие, бетон, Прочие, замазки, Прочие, краски, Прочие, оборудование, Разновидности древесины, Разрушения материалов, Раствор, Ригеля, Сваи, Сваизабивное оборудование, Сварка, Сварочное оборудование, Свойства, Свойства бетона, Свойства вяжущих веществ, Свойства горной породы, Свойства камней, Свойства материалов, Свойства цемента, Сейсмика, Склады, Скобяные изделия, Смеси сухие, Смолы, Стекло, Строительная химия, Строительные материалы, Суперпластификаторы, Сушильное оборудование, Сушка, Сушка, деревообработка, Сырье, Теория и расчет конструкций, Тепловое оборудование, Тепловые свойства материалов, Теплоизоляционные материалы, Теплоизоляционные свойства материалов, Термовлажносная обработка бетона, Техника безопасности, Технологии, Технологии бетонирования, Технологии керамики, Трубы, Фанера, Фермы, Фибра, Фундаменты, Фурнитура, Цемент, Цеха, Шлаки, Шлифовальное оборудование, Шпаклевки, Шпон, Штукатурное оборудование, Шум, Щебень, Экономика, Эмали, Эмульсии, Энергетическое оборудование

Источник: Энциклопедия терминов, определений и пояснений строительных материалов

Энциклопедия терминов, определений и пояснений строительных материалов. - Калининград. Под редакцией Ложкина В.П.. 2015-2016.

construction_materials.academic.ru

вода затворения цемента - это... Что такое вода затворения цемента?

 вода затворения цемента

tempering water

Русско-английский политехнический словарь. Академик.ру. 2011.

  • вода затворения бетонной смеси
  • вода капиллярной каймы

Смотреть что такое "вода затворения цемента" в других словарях:

  • Вода затворения — – дозированное количество воды, необходимое для приготовления цементного теста или бетона. Применяется любая вода, но имеющая водородный показатель рН не менее 4 и содержащая не более 5000 мг минеральных солей на 1 л, в том числе сульфатов в… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Вода для бетонов и растворов — – содержание в воде органических поверхностно активных веществ, сахаров или фенолов, каждого, не должно быть более 10 мг/л. Вода не должна содержать пленки нефтепродуктов, жиров, масел. В воде, применяемой для затворения бетонных смесей и… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Строительно-технические свойства цемента — – совокупность свойств цемента, характеризующих его способность образовывать после затворения водой пластичное и легко формуемое цементное тесто, растворную или бетонную смесь, а в результате последующего твердения – прочный и… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Общие термины, бетон — Термины рубрики: Общие термины, бетон Активация Активность поверхностная Активность пуццолановая Активность термодинамическая …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Цементы — Так, вообще, называются в строительном деле вещества, служащие для скрепления твердых материалов возводимых сооружений в силу химических и физических изменений, происходящих в этих веществах. Различают Ц. воздушные и гидравлические в зависимости… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Синергобетонирование — Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/24 октября 2012. Пока процесс обсужден …   Википедия

  • Центрифугирование — – способ формования изделий путем использования цен­тробежных сил, отжимающих из смеси часть воды затворения и вовлеченный воздух. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ и м. А. А. Гвоздева,… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Водоцементное отношение — (сокращенно В/Ц) – отношение массы воды затворения к массе цемента. [ГОСТ 30515 2013] Водоцементное отношение – отношение массы воды к массе цемента. [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Нитрат натрия — (НН1) NaNO3 – ускоритель твердения, противоморозная добавка. НН1 – применяют как ускоритель твердения при изго­товлении бетонных и железобетонных конструкций, экс­плуатируемых в неагрессивных и агрессивных газо­вых и водных средах.… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • PLASTIMIX F 7.30K — – зимний пластификатор для бето­нов и растворов при ведение работ в период снижения температуры до 8°С. Применяется в цементные растворы (кладка, штукатурка), бетон, предназначенный для общестроитель­ных целей. Преимущества: редуцирует… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • ПОТАШ — ПОТАШ, (калий углекислый, карбонат калия) (П) – соль с сильно выраженными щелочными свойствами, выпускается в виде кристаллического порошка белого цвета. При хранении во влажных условиях возможно слеживание. При работе с кристаллическим порошком… …   Энциклопедия терминов, определений и пояснений строительных материалов

polytechnic_ru_en.academic.ru

Способ получения жидкости затворения цемента

Изобретение относится к промышленности строительных материалов, а именно к способам обработки жидкости затворения для приготовления бетонной смеси, и направлено на повышение степени гидратации цемента и прочности цементного камня. Техническим результатом является повышение морозоустойчивости бетонной смеси, увеличение степени гидратации цемента и прочности цементного камня в ранние сроки твердения. Предложенный способ включает электрохимическую обработку водопроводной воды в трехкамерном электролизере с ионоселективными мембранами переменным асимметричным током. При этом анод электролизера выполняют из шунгита. Причем в процессе электрохимической обработки воды в аноде и в анодной камере возбуждают ультразвуковые колебания, частота которых лежит выше частоты порога кавитации в диапазоне от 20 кГц до 100 кГц, а интенсивность упомянутого ультразвука лежит в области стабильной кавитации от 1,5 Вт/см2 до 2,5 Вт/см2. Обработку воды прекращают при достижении концентрацией частиц гидратированного фуллерена 10-3-10-4%.

 

Изобретение относится к промышленности строительных материалов, а именно к способам обработки жидкости затворения для приготовления бетонной смеси, и направлено на повышение степени гидратации цемента и прочности цементного камня.

Известен способ получения жидкости затворения путем добавления в нее наночастиц (наномодификатора), в частности фуллерена с размером частиц от 20 до 200 нм, до достижения концентрации фуллерена в воде 10-4-10-7% [1].

Недостатком указанного способа является то, что получение наночастиц фуллерена - процесс трудоемкий и дорогостоящий. В 90 годы прошлого столетия, когда фуллерены только стали использовать для практических нужд, стоимость фуллерена составляла 10000$ за грамм. Сравнительно быстрое увеличение общего количества установок для получения фуллеренов и постоянная работа по улучшению методов их очистки привели к существенному снижению стоимости С60 за последние 17 лет - с 10000$ до 10-15$ за грамм {2}, что подвело к рубежу их реального промышленного использования. Тем не менее, цена фуллерена, несмотря на ее заметное снижение за последние годы, остается все еще достаточно высокой. Кроме того, искусственно получаемые наночастицы фуллерена практически нерастворимы в воде, что не позволяет повысить их концентрацию в жидкости затворения, и это также ограничивает потенциальные возможности модифицируемой жидкости. В упомянутом аналоге имеется необходимость засыпать в каждую очередную порцию жидкости затворения определенную довеску (дозу) фуллереновых частиц, что усложняет его реализацию.

Известен способ водоподготовки в технологии приготовления бетонной смеси, когда воду перед смешением с другими компонентами обрабатывают постоянным электрическим током в бездиафрагменном электролизере. При этом обработку воды осуществляют при анодной плотности тока на электродах (0,1-2,0)102 А/м2, а суммарная площадь анодов относится к суммарной площади катодов как 1:(1,0-2,5). Кроме того, перед обработкой постоянным электрическим током или после нее воду дополнительно обрабатывают магнитным полем напряженностью (0,01-2,0)104 А/м [3].

Недостатками способа являются его сложность и высокая энергоемкость, связанные с комплексной обработкой жидкости затворения постоянным электрическим током и магнитным полем.

Известен также способ приготовления жидкости затворения бетонной смеси, заключающийся в том, что в воду вводят соли жесткости, после чего раствор подвергают гидромеханическому воздействию с последующей обработкой жидкости в электролизере переменным электрическим током (U=30-60 В, i=0,01-0,025 А/см2; f=50-200 Гц), после чего жидкость обрабатывают магнитным полем 300-500 Э [4].

Недостатками этого способа являются его нетехнологичность, сложность и высокая энергоемкость, связанные с реализацией операций химического, гидромеханического, электрохимического и магнитного воздействий на жидкость затворения.

Известен способ получения бетонного камня, включающий электрохимическую обработку жидкости затворения в трехкамерном электролизере постоянного тока. При этом в среднюю камеру электролизера подают 1-3% раствор хлорида кальция, а в крайние камеры - водопроводную воду. Электрохимический процесс ведут при выпрямленном напряжении 220 В. Цемент затворяют раствором из анодной или катодной камеры. При этом прирост прочности цементного камня составляет до 45% в возрасте 1 суток и до 58% в возрасте 28 суток по сравнению с прочностью цементного камня, затворенного водопроводной водой [5].

К недостаткам указанного способа [5] следует отнести его нетехнологичность, связанную с использованием при электрохимической обработке жидкости затворения химического компонента (1-3% раствор СаСl2) и с применением относительно высокого напряжения, что делает использование данного способа энергоемким и небезопасным. Кроме того, прирост прочности цементного камня, особенно в ранние сроки твердения, невысок и составляет около 45%.

Наиболее близким по количеству существенных признаков и достигаемому результату является способ получения жидкости затворения цемента, включающий электрохимическую обработку водопроводной воды в трехкамерном электролизере с ионоселективными мембранами с последующим использованием обработанной воды для затворения цемента, для затворения цемента используют обработанную водопроводную воду, отобранную из средней, или катодной, или анодной камер, причем электрохимическую обработку воды ведут переменным асимметричным током при напряжении 40-50 В, частоте 500-600 Гц при отношении амплитуд прямой и обратной полуволн тока 1,6-1,7 [6].

Недостатком способа-прототипа является то, что жидкость затворения не структурированная, что снижает технологические свойства бетонной смеси (низкая морозоустойчивость бетонной смеси, пластичность, степень гидратации цемента, распалубочное время и др.), а прочность бетонного камня, полученного с использованием жидкости затворения, активированной по способу-прототипу, относительно низка.

В основу изобретения положена задача повышение эффективности обработанной жидкости затворения, при этом технический результат заключается в повышении морозоустойчивость бетонной смеси степени, увеличение гидратации цемента и прочности цементного камня в ранние сроки твердения.

Поставленная задача решена следующим образом. Согласно заявляемому способу жидкость затворения (водопроводную воду) обрабатывают в трехкамерном электролизере с ионоселективными мембранами переменным асимметричным током. При этом анод электролизера выполняют из шунгита и в процессе электрохимической обработки воды в аноде и в анодной камере возбуждают ультразвуковые колебания, частота которых лежит выше частоты порога кавитации в диапазоне от 20 кГц до 100 кГц, а интенсивность упомянутого ультразвука лежит в области стабильной кавитации от 1,5 Вт/см2 до 2,5 Вт/см2, обработку воды прекращают при достижении концентрацией частиц гидратированного фуллерена 10-3-10-4% и используют для затворения цемента. При этом для затворения цемента берут растворы из катодной, средней или из анодной камеры электролизера.

Общее между заявляемым способом и прототипом в том, что электрохимическую обработку жидкости затворения осуществляют в трехкамерном электролизере с ионоселективными мембранами переменным асимметричным током, а в качестве жидкости затворения берут воду из средней, анодной или катодной камер электролизера.

Отличие заявляемого способа от прототипа состоит в том, что электрохимическую обработку жидкости затворения ведут в электролизере, анод которого выполняют из шунгита, причем в процессе электрохимической обработки воды в аноде и в анодной камере возбуждают ультразвуковые колебания, частота которых лежит выше частоты порога кавитации в диапазоне от 20 кГц до 100 кГц, а интенсивность упомянутого ультразвука лежит в области стабильной кавитации от 1,5 Вт/см2 до 2,5 Вт/см2, при этом обработку воды прекращают при достижении концентрацией частиц гидратированного фуллерена 10-3-10-4%, после чего активированную воду используют для затворения цемента. Дополнительно следует отметить, что при реализации заявляемого способа не требуется введения химических добавок, которые успешно заменяет перешедшие из анода в воду в процессе ее активации частицы гидратированного фуллерена.

Проведенный анализ позволяет сделать вывод о наличии новизны и существенных признаков заявляемого способа.

Электрохимическая обработка водопроводной воды асимметричным переменным током в трехкамерном электролизере с ионоселективными мембранами усиливает химическую активность жидкости, то есть активизирует ее. Затворение цемента электрохимически активированной водой оказывает влияние на процессы растворения, гидратации, гидролиза, что в целом приводит к повышению прочности цементного камня, особенно, в ранние сроки твердения. В межэлектродном пространстве электролизера под действием асимметричного переменного тока происходит ориентация и направленное движение ионов и молекул воды к электродам, создаются условия, при которых проявляются резонансные эффекты в двойном электрическом слое (ДЭС) на плоскости электродов. Структурные изменения, начавшиеся у межфазной границы в ДЭС, благодаря когерентному движению молекул воды и водородным связям, распространяются вглубь жидкой фазы, формируются ориентационные структуры, в которых при воздействии слабых электромагнитных полей возможно спонтанное нарушение их симметрии и дальнейшее разрушение. Существенно повышает активные свойства жидкости затворения попавший в анолит фуллерен. В шунгите содержатся не просто фуллерены, а гидратированные фуллерены, способные экстрагироваться водой. Таким образом, изменение надмолекулярной структуры воды значительно увеличивает ее химическую активность и, как следствие, влияет на процесс структурообразования цементного камня, приводит к повышению его прочности. Уникальным свойством фуллеренов является их способность структурировать воду. Фуллерены, полученные искусственным путем, растворяются в воде с большим трудом. Зато, если они растворены, как это имеет место в шунгите, вокруг каждого шара образуется многослойная оболочка из правильно расположенных молекул воды, примерно в десять молекулярных слоев. Эта водяная, иначе говоря, гидратная оболочка молекулы Фуллерена и есть структурированная вода.

Известно, что при электролизе воды происходит разрушение анода и положительно заряженные ионы его материала (катионы) проходят от анода через анолит и через мембрану поступают в катодную камеру.

В заявляемом способе в качестве анода используют шунгит. Использование шунгита в качестве анода позволяют в первую очередь его высокая электропроводность и другие его физические характеристики, приведенные ниже:

- плотность - 2,25-2,40 г/см3

- пористость - 0,5-5%

- прочность на сжатие 100-150 МПа

- модуль упругости (Е) - 0,31×105 МПа

- электропроводность - (1-3)×103 См/м

- теплопроводность - 3,8 Вт/м·к.

- среднее значение коэффициента теплового расширения в интервале температур 20-600 С - 12×10-6 1/град.

В заявляемом способе используется тот факт, что в процессе электролиза из анода электрическим полем вырываются положительно заряженные ионы (катионы) материала анода, которые под действием поля переносятся в прикатодную область, насыщая католит этими катионами.

Следует отметить, что фуллерены, полученные искусственным путем, практически нерастворимы в воде. Шунгит - это камень естественного происхождения, и гидратированные фуллерены, входящие в его состав, способны к растворению в воде.

В заявляемом способе процесс поступления положительных ионов из шунгитового анода интенсифицируют, используя ультразвук.

По своей физической природе ультразвук представляет собой упругие волны и в этом он не отличается от звука.

Принято считать, что к ультразвуковому диапазону относятся частоты, находящиеся в диапазоне от 20 кГц до 1 ГГц. Частоты, находящиеся в диапазоне от 16 кГц до 20 кГц, относятся к слышимому звуку.

Частоты, лежащие ниже 16 кГц, относятся к инфразвуку, а частоты, лежащие выше 1 ГГц, называют гиперзвуком.

Область частот ультразвука можно подразделить на три подобласти:

ультразвук низких частот (2×104-105 Гц) - УНЧ;

ультразвук средних частот (105-107 Гц) - УСЧ;

ультразвук высоких частот (107-109 Гц) - УЗВЧ.

В жидких средах под действием ультразвука возникает и протекает специфический физический процесс - ультразвуковая кавитация, обеспечивающий максимальные энергетические воздействия на шунгитовый анод.

В ультразвуковой волне во время полупериодов разрежения возникают кавитационные пузырьки, которые резко захлопываются после перехода в область повышенного давления, порождая сильные гидродинамические возмущения в воде и в порах шунгитового анода, за счет чего значительно усиливается эффект образования катионов из материала анода (шунгита).

Кавитация производится за счет чередующихся волн высокого и низкого давления, образуемых звуком высокой частоты (ультразвуком).

Ультразвуковая кавитация - основной инициатор физико-химических процессов, возникающих в жидкости под действием ультразвука, в частности процессов образования катионов из материала анода.

Кавитационные явления в той или иной среде возникают только при превышении ультразвуком порога кавитации.

Порогом кавитации называется интенсивность ультразвука, ниже которой не наблюдаются кавитационные явления. Порог кавитации зависит от параметров, характеризующих как ультразвук, так и саму жидкость.

Для воды и водных растворов пороги кавитации возрастают с увеличением частоты ультразвука и уменьшением времени воздействия.

В при частотах выше 20 кГц порог нестабильной кавитации находится в диапазоне от 0,3 Вт/см2 до 1 Вт/см2.

Дальнейшее повышение интенсивности до 1,5 Вт/см2 приводит к нарушению линейности колебаний стенок пузырьков. Начинается стадия стабильной кавитации. Диапазон интенсивностей стабильной кавитации лежит в области от 1,5 Вт/см2 до 2,5 Вт/см2. Пузырек сам становится источником ультразвука колебаний. На его поверхности возникают волны, микротоки, электрические разряды.

Увеличение интенсивности ультразвука за величину 2,5 Вт/см2 приводит вновь к стадии нестабильной кавитации.

В заявляемом способе наиболее эффективно использовать диапазон интенсивностей стабильной кавитации лежит в области от 1,5 Вт/см2 до 2,5 Вт/см2.

Именно в этом диапазоне частот и мощностей ультразвука активируемая вода, омывая поверхность анода и проникая в его поры, способствует интенсивному разрушению анода, материал которого поступает в анолит в виде нейтральных частиц и ионов (катионов) гидратированного фуллерена.

Под действием ультразвука активируемая вода интенсивно перемешивается и через поры проникает внутрь шунгита, что позволяет ей взаимодействовать с поверхностью шунгита. За счет ультразвука существенно увеличивается интенсивность разрушения частиц шунгита и поступления наночастиц фуллерена, содержащегося в шунгите, в воду, что в значительной мере повышает эффективность процесса активации воды.

Наилучшая гидратация частиц шунгита возникает в диапазоне стабильной кавитации, возникающей в области низких частот. Поэтому активировать жидкость затворения бетонных смесей лучше всего ультразвуком низких частот. Выбор этого диапазона частот обусловлен следующими факторами.

Во-первых, частота 20 кГц принята за нижнюю границу возникновения ультразвуковых колебаний. При частотах ниже 20 кГц находится область слышимого звука и процессы кавитации в этой области не наблюдаются.

Во-вторых, в низкочастотной области, лежащей в от 20 кГц до 100 кГц, диапазон интенсивностей ультразвука, в котором наблюдается стабильная кавитация, как это указывалось выше, лежит в области от 1,5 Вт/см2 до 2,5 Вт/см2.

Область частот, лежащая выше 100 кГц, относится к области средних частот ультразвука. В этой области частот при определенной интенсивности ультразвука может возникнуть эффект фонтанирования струи активированной жидкости, что может вызвать нежелательные явления при приготовлении бетонных смесей. Кроме того, для обеспечения стабильной кавитации в области средних частот требуются более мощные излучатели ультразвука, чем для создания упомянутой области в диапазоне низких частот. Это обусловлено тем, что порог кавитации возрастает с увеличением частоты ультразвука. Необходимость применения более мощных излучателей в области средних частот по сравнению с мощностью излучателей в области низких частот приводит к усложнению и к удорожанию конструкции активатора воды.

В заявляемом способе наиболее эффективно использовать диапазон интенсивностей стабильной кавитации, который лежит в области от 1,5 Вт/см2 до 2,5 Вт/см2.

Именно в этом диапазоне частот и мощностей ультразвука активируемая вода, омывая поверхность шунгита и проникая в его поры, способствует его интенсивному разрушению и наночастицы фуллерена поступают в воду в виде нейтральных частиц.

Концентрация частиц фуллерена в воде при воздействии на шунгит и воду в анодной камере электролизера ультразвуком зависит от частоты, интенсивности ультразвука и времени воздействия ультразвуком на шунгитовый анод и воду в анодной камере.

Опыты показали, что воздействие ультразвука на воду и шунгит в течение 10-20 минут приводит к достижению концентрации наночастиц фуллерена в воде в диапазоне 10-3-10-4%, что достаточно для того, чтобы придать жидкости затворения (активированной воде) свойства, требуемые для эффективного затворения цемента. Эти свойства жидкости затворения, которая становится структурированной, приводят к повышению степени гидратации цемента и прочности бетонного камня, а также к улучшению удобоукладывемости бетонной смеси, к снижению водоцементного отношения, без ущерба качественным и технологическим свойствам бетонных смесей.

Сформировать суждение о том, сколько воды может структурировать фуллерен, можно из следующих соображений. Поскольку диаметр гидратной оболочки десятикратно превышает поперечник углеродной сферы, ее объем, а соответственно, и масса структурированной фуллереном воды будут пропорциональны кубу линейного размера и превысят массу фуллерена примерно в тысячу раз. Таким образом, фуллерен структурирует в тысячи раз большую массу воды. Иначе говоря, что уже сотые доли процента фуллерена способны структурировать значительную долю раствора. Т.е. фуллерен при активации жидкости затворения действует в малых и сверхмалых дозах.

По своим свойствам структурированная вода, окружающая молекулу фуллерена, существенно отличается от обычной. В частности, она замерзает не при 0, а при -2,8°С. Это в значительной степени повышает морозоустойчивость бетонной смеси, что позволяет осуществлять бетонирование при более низких температурах без дополнительного разогрева бетонной смеси.

Пример. Для приготовления цементного камня использовался портландцемент М 300, в качестве жидкости затворения - активированную воду, приготовленную по способу-прототипу и по заявляемому способу. Электролизер был выполнен трехкамерным, проточным.

Средняя камера электролизера образована ионоселективными мембранами МК-40 и МА-40. Катод площадью 30 см2 был изготовлен из нержавеющей стали и в обоих случаях (в прототипе и в заявляемом способе) оставался одни и тем же. Анод же в электролизере менялся. При обработке воды по способу-прототипу он был выполнен из прессованного графита, а по заявляемому способу - из шунгита. Процесс электрохимической обработки в обоих случаях осуществляли на переменном асимметричном токе (S=l,6-1,7) при напряжении 40-50 В, частоте 500-600 Гц. Отличие состояло в том, что при обработке воды по заявляемому способу в аноде и в анодной камере возбуждали ультразвуковые колебания, частота которых лежала выше частоты порога кавитации в диапазоне от 20 кГц до 100 кГц, а интенсивность упомянутого ультразвука лежала в области стабильной кавитации от 1,5 Bт/cм2 до 2,5 Bт/cм2. В рассматриваемом примере частота ультразвука составляла 20 кГц, а интенсивность упомянутого ультразвука лежала в области стабильной кавитации и равнялась 2 Вт/см2. В качестве кавитационного дезинтегратора был использован индустриальный звуковой процессор «Hielscher Ultrasound Technology UP» марки UIP 1000 hd [7].

Опытным путем было установлено, что при обработке активируемой воды в течение 10-20 минут концентрация частиц гидратированного фуллерена изменялась 10-3-10-4% соответственно. В рассматриваемом примере обработку воды вели в обоих случаях в течение 20 минут. Такая продолжительность процесса гарантировала, что концентрация частиц фуллерена в жидкости затворения будет составлять 10-3-10-4%. После 20 минут обработку воды прекращали, после чего активированную воду использовали для затворения цемента.

Гидратация цемента исследовалась рентгеноструктурным методом на установке ДРОН-4. Исследования показали, что в цементном тесте, приготовленном по способу-прототипу, гидратация цемента составляла 70%, тогда как по заявляемому способу она была равной 86%.

Полученными растворами затворяли цемент (В/Ц:=0,27) и формировали кубики размером 3×3×3 см, которые твердели в естественно-влажных условиях. В установленные сроки (7-28 суток) образцы испытывают на прочность при сжатии. Прочность при сжатии цементного камня, затворенного жидкостью затворения, приготовленной по способу -прототипу, составила в возрасте 7 и 28 суток в среднем соответственно 242 и 427 кгс/см2, тогда как прочность при сжатии цементного камня, затворенного жидкостью затворения, приготовленной по заявляемому способу, составила в возрасте 7 и 28 суток в среднем соответственно 272 и 513 кгс/см3.

Таким образом, заявляемый способ по сравнению со способом-прототипом позволяет повысить степень гидратации цемента в 1,23 раза, а прочность цементного камня при сжатии в 1,12 и в 1,2 раза в возрасте 7 и 28 суток соответственно. Дополнительным преимуществом жидкости затворения, приготовленной по заявляемому способу перед прототипом, является то, что она замерзает не при 0, а при -2,8°С. Это в значительной степени повышает морозоустойчивость бетонной смеси, что позволяет осуществлять бетонирование при более низких температурах без дополнительного разогрева бетонной смеси.

Источники информации

1. Пухаренко Ю.В., Никитин В.А., Летенко Д.Г. Наностуктурирование воды затворения как способ повышения эффективности пластификаторов бетонных смесей// Строительные материалы. - Наука, №8 (приложение к научно-техническому журналу» Строительные материалы», 2006.-е. 154-161.

2. Вуль А.Я. Материалы электронной техники, №3, с.4 (1999).

3. Патент Российской Федерации N 2017702, М. кл5 С04В 40/00, Бюл. №15, 15.08.94.

4. Патент СССР №1782230, М. кл5. С04В 40/00, Бюл. N 46, 15.12.92.

5. Авт.св. №1705266, М. кл5 С04В 40/00, Бюл. №2, 15.01.92.

6. Патент РФ №2163582. Способ получения жидкости затворения цемента Семенова Г.Д.; Саркисов Ю.С.; Еремина А.Н.; Семенов В.Д.; Образцов СВ. /-Опубликовано: 2001.02.27. Бюл. №6 (Прототип).

7. Inquiry from http://www.hielscher.com.

Способ получения жидкости затворения цемента, включающий электрохимическую обработку водопроводной воды в трехкамерном электролизере с ионселективными мембранами асимметричным переменным током с последующим использованием обработанной воды, отобранной из анодной камеры, средней или катодной камер для затворения цемента, отличающийся тем, что анод электролизера выполняют из шунгита и в процессе электрохимической обработки воды в аноде и в анодной камере возбуждают ультразвуковые колебания, частота которых лежит выше частоты порога кавитации в диапазоне от 20 кГц до 100 кГц, а интенсивность упомянутого ультразвука лежит в области стабильной кавитации от 1,5 Вт/см2 до 2,5 Вт/см2, обработку воды прекращают при достижении концентрацией частиц гидратированного фуллерена 10-3-10-4%, после чего активированную воду используют для затворения цемента.

www.findpatent.ru

Время - затворение - Большая Энциклопедия Нефти и Газа, статья, страница 1

Время - затворение

Cтраница 1

Время затворения и закачивание цементного раствора зависит от подачи смесительной машины.  [1]

Во время затворения цемента из смесительной камеры может выходить раствор с большим содержанием воды. Это может произойти из-за забитости смесительной камеры комками цемента.  [2]

Во время затворения растворов водитель находится в кабинете автомашины, а рабочий обслуживает машину и смесительное устройство.  [3]

Во время затворения тампонажных смесей необходимо кон - третировать их плотность. Колебания плотности раствора не должны превышать 0 03 г / см3 от заданного значения. Период перехода на закачку продавочной жидкости должен быть ко - ротким и не превышать 60 с. По окончании цементирования следует закрыть превентор.  [4]

Оператор второго или третьего разряда во время затворения цемента должен стоять у расходного бака и лопатой очищать сетку от сгустков раствора. Он также очищает расходный бачок от скопившихся в нем комков и выбрасывает цементную массу, находящуюся в углах и по стенкам бачка. Оператор должен при этом работать в предохранительных очках, чтобы уберечь глаза от брызг цементного раствора.  [5]

Всего в скважину закачали 20 м3 невспененного раствора, время затворения и закачки составило 30 мин.  [6]

Опыт цементирования глубоких высокотемпературных скважин с использованием большого количества цементно-бентонитовых смесей показал, что применение насадок диаметром 18 - 20 мм позволило сократить время затворения смесей с 55 - 45 до 40 - 35 мин.  [7]

Подготовленные сырьевые материалы затворяют водой и производят смешивание компонентов до достижения однородного состояния массы, пользуясь лабораторной мешалкой. Замечают время затворения массы водой и фиксируют его в рабочем журнале. Затем ртутным термометром определяют температуру смеси и заполняют этой смесью цилиндрический сосуд прибора. Количество приготавливаемой для опыта смеси зависит от емкости цилиндрического сосуда, который должен заполняться смесью до краев. Металлической линейкой или шпателем выравнивают поверхность массы и закрепляют цилиндрический сосуд на подставке прибора. Затем строго вертикально вводят в испытуемую массу цилиндрический стержень на глубину 10 см. В строго определенное время, считая от момента затворения смеси водой, производят нагружение системы с помощью воды или специальных грузов. При этом масса груза ( Р) должна быть несколько больше массы Р0, при которой начинается течение системы, но не превышать массу Р критического груза. При этом величину Р рассчитывают сразу же после определения величины предельного напряжения сдвига данной смеси.  [8]

При подборе состава смеси необходимо ориентироваться на первоначальную растекаемость 18 - 20 см. Если после определения консистенции на консистометре за время ожидаемого цементирования вязкость окажется свыше условных 3 Па с, то в суспензию следует ввести реагенты-пластификаторы или изменить соотношение компонентов. При растекаемости 18 - 20 см необходимо определить плотность суспензии, которой и должны придерживаться во время затворения смеси на буровой.  [9]

Нам представляется, что при подборе состава смесей, исключая гельцементные, необходимо ориентироваться на первоначальную растекаемость 18 - 20 см. Если же после определения консистенции на консистометре за время ожидаемого цементирования вязкость окажется свыше условных 30 Пз, то в суспензию следует вводить реагенты-пластификаторы или менять соотношение компонентов. При растекаемости 18 - 20 см необходимо определять плотность суспензии, которой и должны придерживаться во время затворения цемента ( смеси) на буровой.  [10]

Модификация цементных растворов и бетонов порошкообразными эмульсиями аналогична модификации латексами. В большинстве случаев порошкообразные эмульсии вводят путем сухого смешивания с цементом и предварительно смешанными заполнителями с последующим затворением водой. Во время затворения порошкообразные эмульсии реэмульги-руются в модифицированном растворе или бетоне и ведут себя так же, как латексы, используемые в качестве модификаторов цемента.  [11]

Гипсовые изделия не следует применять во влажных помещениях. Для повышения водостойкости к гипсу добавляется известь и молотый шлак. Чтобы замедлить схватывание, во время затворения к гипсу добавляют известь или клеевую воду.  [12]

Если твердевшее в течение того или иного срока цементное тесто высушить, размолоть и вновь затворить водою, то полученное тесто снова обладает способностью схватываться и отвердевать. Это вторичное твердение объясняется в первую очередь дополнительной гидратацией тех клинкерных зерен, которые остались незатронутыми во время первого затворения, а затем были измельчены при размоле.  [14]

В ряде производственных организаций Мингео РСФСР применяют тампонирование зон поглощения сухими высокодисперсными БСС. Тампонажная смесь в сухом виде доставляется непосредственно в зону осложнения, где она при соединении с жидкостью образует тампонажный раствор. При подборе композиций тампонажных смесей должны быть обеспечены минимальные сроки схватывания, так как исключается время для прокачки смеси с поверхности, а время затворения и задавливанин ее в стенки скважины очень невелико.  [15]

Страницы:      1    2

www.ngpedia.ru


Смотрите также